OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 25 — Dec. 3, 2012
  • pp: 27242–27252

Bidirectional scatter measurements of a guided-mode resonant filter photonic crystal structure

M. A. Marciniak, S. R. Sellers, R. B. Lamott, and B. T. Cunningham  »View Author Affiliations


Optics Express, Vol. 20, Issue 25, pp. 27242-27252 (2012)
http://dx.doi.org/10.1364/OE.20.25.027242


View Full Text Article

Enhanced HTML    Acrobat PDF (2026 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

This work investigates the Bidirectional Scatter Distribution Function (BSDF) at incident angles other than normal and at 544-nm wavelength of a Guided Mode Resonance Filter (GMRF) Photonic Crystal (PC) structure designed for normally incident light at 532 nm. Strong out-coupling of PC diffraction orders into both the transmitted and reflected hemispheres was observed specifically at a 25.7° incidence angle, which we attribute to this incident angle/wavelength pair being a good match to the ( ± 1, 0) PC grating mode. BSDF measurements at incident angles of 15° and 35° also displayed some out-coupled diffraction, though much lower in magnitude, and are also attributed to being a weaker match to the ( ± 1, 0) PC grating mode. Three-dimensional finite-difference time-domain Maxwell's equation simulations demonstrate that since this GMRF was designed for complete destructive interference of the transmitted light upon normal incidence, stronger out-coupling of the diffraction is expected for modal solutions as the angle of incidence increases.

© 2012 OSA

OCIS Codes
(120.5820) Instrumentation, measurement, and metrology : Scattering measurements
(290.1483) Scattering : BSDF, BRDF, and BTDF
(050.1755) Diffraction and gratings : Computational electromagnetic methods
(050.5298) Diffraction and gratings : Photonic crystals

ToC Category:
Photonic Crystals

History
Original Manuscript: August 10, 2012
Manuscript Accepted: September 12, 2012
Published: November 19, 2012

Citation
M. A. Marciniak, S. R. Sellers, R. B. Lamott, and B. T. Cunningham, "Bidirectional scatter measurements of a guided-mode resonant filter photonic crystal structure," Opt. Express 20, 27242-27252 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-25-27242


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. N. Fabre, L. Lalouat, B. Cluzel, X. Mélique, D. Lippens, F. de Fornel, and O. Vanbésien, “Optical near-field microscopy of light focusing through a photonic crystal flat lens,” Phys. Rev. Lett.101(7), 073901 (2008). [CrossRef] [PubMed]
  2. S. N. Tandon, M. Soljacic, G. S. Petrich, J. D. Joannopoulos, and L. A. Kolodziejski, “The superprism effect using large area 2D-periodic photonic crystal slabs,” Photon. Nano. Fund. Appl.3(1), 10–18 (2005). [CrossRef]
  3. H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, “Self-collimating phenomena in photonic crystals,” Appl. Phys. Lett.74(9), 1212–1214 (1999). [CrossRef]
  4. H. Kurt, E. Colak, O. Cakmak, H. Caglayan, and E. Ozbay, “The focusing effect of graded index photonic crystals,” Appl. Phys. Lett.93(17), 171108 (2008). [CrossRef]
  5. I. Prieto, B. Galiana, P. A. Postigo, C. Algora, L. J. Martínez, and I. Rey-Stolle, “Enhanced quantum efficiency of Ge solar cells by a two-dimensional photonic crystal nanostructured surface,” Appl. Phys. Lett.94(19), 191102 (2009). [CrossRef]
  6. T. R. Nielsen, A. Lavrinenko, and J. Mork, “Slow light in quantum dot photonic crystal waveguides,” Appl. Phys. Lett.94(11), 113111 (2009). [CrossRef]
  7. M. Galli, S. L. Portalupi, M. Belotti, L. C. Andreani, L. O’Faolain, and T. F. Krauss, “Light scattering and Fano resonances in high-Q photonic crystal nanocavities,” Appl. Phys. Lett.94(7), 071101 (2009). [CrossRef]
  8. S. S. Wang and R. Magnusson, “Theory and applications of guided-mode resonance filters,” Appl. Opt.32(14), 2606–2613 (1993). [CrossRef] [PubMed]
  9. N. Ganesh and B. T. Cunningham, “Photonic-crystal near-ultraviolet reflectance filters fabricated by nanoreplica molding,” Appl. Phys. Lett.88(7), 071110 (2006). [CrossRef]
  10. F. Yang, G. Yen, and B. T. Cunningham, “Integrated 2D photonic crystal stack filter fabricated using nanoreplica molding,” Opt. Express18(11), 11846–11858 (2010). [CrossRef] [PubMed]
  11. T. Sun and D. Wu, “Guided-mode resonance excitation on multimode planar periodic waveguide,” J. Appl. Phys.108(6), 063106 (2010). [CrossRef]
  12. A. Hessel and A. A. Oliner, “A new theory of Wood's anomalies on optical gratings,” Appl. Opt.4(10), 1275–1299 (1965). [CrossRef]
  13. P. C. Mathias, N. Ganesh, L. L. Chan, and B. T. Cunningham, “Combined enhanced fluorescence and label-free biomolecular detection with a photonic crystal surface,” Appl. Opt.46(12), 2351–2360 (2007). [CrossRef] [PubMed]
  14. I. Abdulhalim, M. Auslender, and S. Hava, “Resonant and scatterometric grating-based nanophotonic structures for biosensing,” J. Nanophotonics1(1), 011680 (2007). [CrossRef]
  15. F. Yang, G. Yen, G. Rasigade, J. A. N. T. Soares, and B. T. Cunningham, “Optically tuned resonant optical reflectance filter,” Appl. Phys. Lett.92(9), 091115 (2008). [CrossRef]
  16. I. Abdulhalim, “Anisotropic layers in waveguides for mode tuning and tunable filtering,” Proc. SPIE6135, 61350R, 61350R-10 (2006). [CrossRef]
  17. F. Yang, G. Yen, and B. T. Cunningham, “Voltage-tuned resonant reflectance optical filter for visible wavelengths fabricated by nanoreplica molding,” Appl. Phys. Lett.90(26), 261109 (2007). [CrossRef]
  18. D. W. Dobbs and B. T. Cunningham, “Optically tunable guided-mode resonance filter,” Appl. Opt.45(28), 7286–7293 (2006). [CrossRef] [PubMed]
  19. I. Abdulhalim, “Simplified optical scatterometry for periodic nanoarrays in the near-quasi-static limit,” Appl. Opt.46(12), 2219–2228 (2007). [CrossRef] [PubMed]
  20. S.-T. Wu, M. S. Li, and A. Y.-G. Fuh, “Observation of conical scattering cones from a two-dimensional hexagonal photonic crystal based on a polymer-dispersed liquid crystal,” Opt. Lett.33(23), 2758–2760 (2008). [CrossRef] [PubMed]
  21. J. Boulengueza, S. Berthiera, and J. P. Vigneron, “Simulations tools for natural photonic structures,” Physica B394(2), 217–220 (2007). [CrossRef]
  22. D. G. Stavenga, H. L. Leertouwer, P. Pirih, and M. F. Wehling, “Imaging scatterometry of butterfly wing scales,” Opt. Express17(1), 193–202 (2009). [CrossRef] [PubMed]
  23. E. Van Hooijdonk, C. Barthou, J. P. Vigneron, and S. Berthier, “Detailed experimental analysis of the structural fluorescence in the butterfly Morpho sulkowskyi (Nymphalidae),” J. Nanophotonics5(1), 053525 (2011). [CrossRef]
  24. R. V. Nair and R. Vijaya, “Observation of higher-order diffraction features in self-assembled photonic crystals,” Phys. Rev. A76(5), 053805 (2007). [CrossRef]
  25. J. Allgair, D. Benoit, R. Hershey, L. C. Litt, I. Abdulhalim, B. Braymer, M. Faeyrman, J. C. Robinson, U. Whitney, Y. Xu, P. Zalicki, and J. Seligson, “Manufacturing considerations for implementation of scatterometry for process monitoring,” Proc. SPIE3998, 125–134 (2000). [CrossRef]
  26. I. Kallioniemi, J. Saarinen, and E. Oja, “Optical scatterometry of subwavelength diffraction gratings: neural-network approach,” Appl. Opt.37(25), 5830–5835 (1998). [CrossRef] [PubMed]
  27. C. J. Raymond, M. R. Murnane, S. Sohail, H. Naqvi, and J. R. McNeil, “Metrology of subwavelength photoresist gratings using optical scatterometry,” J. Vac. Sci. Technol. B13(4), 1484–1495 (1995). [CrossRef]
  28. B. L. Balling, “A comparative study of the bidirectional reflectance distribution function of several surfaces as a mid-wave infrared diffuse reflectance standard,” MSEE thesis, Air Force Institute of Technology, 2009.
  29. T. A. Germer and C. C. Asmail, “Goniometric optical scatter instrument for out-of-plane,” Rev. Sci. Instrum.70(9), 3688–3695 (1999). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited