OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 25 — Dec. 3, 2012
  • pp: 27288–27296

Planar Bragg grating in bulk Polymethylmethacrylate

M. Rosenberger, G. Koller, S. Belle, B. Schmauss, and R. Hellmann  »View Author Affiliations


Optics Express, Vol. 20, Issue 25, pp. 27288-27296 (2012)
http://dx.doi.org/10.1364/OE.20.027288


View Full Text Article

Enhanced HTML    Acrobat PDF (1821 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report on a one-step writing process of a planar waveguide including a Bragg grating structure in bulk Polymethylmethacrylate (PMMA). A KrF excimer laser and a phase mask covered by an amplitude mask were used to locally increase the refractive index in PMMA and thereby generate simultaneously the planar waveguide and the Bragg grating. Our results show a reflected wavelength of the Bragg grating of about 1558.5 nm in accordance to the phase mask period. The reflectivity of the grating is about 80%. Initial characteristics of the Bragg grating structure towards humidity are investigated.

© 2012 OSA

OCIS Codes
(050.2770) Diffraction and gratings : Gratings
(160.5470) Materials : Polymers
(220.4610) Optical design and fabrication : Optical fabrication

ToC Category:
Diffraction and Gratings

History
Original Manuscript: August 22, 2012
Revised Manuscript: October 18, 2012
Manuscript Accepted: October 19, 2012
Published: November 20, 2012

Citation
M. Rosenberger, G. Koller, S. Belle, B. Schmauss, and R. Hellmann, "Planar Bragg grating in bulk Polymethylmethacrylate," Opt. Express 20, 27288-27296 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-25-27288


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. Ksendzov and Y. Lin, “Integrated optics ring-resonator sensors for protein detection,” Opt. Lett.30(24), 3344–3346 (2005). [CrossRef] [PubMed]
  2. R. Orghici, P. Lützow, J. Burgmeier, J. Koch, H. Heidrich, W. Schade, N. Welschoff, and S. Waldvogel, “A microring resonator sensor for sensitive detection of 1,3,5-trinitrotoluene (TNT),” Sensors (Basel)10(7), 6788–6795 (2010). [CrossRef] [PubMed]
  3. S. Belle, S. Scheurich, R. Hellmann, S. So, I. J. G. Sparrow, and G. D. Emmerson, “Refractive index sensing for online monitoring water and ethanol content in bio fuels,” Proc. SPIE7726, 77261K, 77261K-6 (2010). [CrossRef]
  4. D. Wales, R. Parker, and J. Gates, “An integrated Bragg grating oxygen sensor using a hydrophobic sol-gel layer doped with an organic dye,” The European Conference on Lasers and Electro-Optics173306 (2011).
  5. S. Scheurich, S. Belle, R. Hellmann, S. So, I. J. G. Sparrow, and G. Emmerson, “Application of a silica-on-silicon planar optical waveguide Bragg grating sensor for organic liquid compound detection,” Proc. SPIE7356, 73561B, 73561B-8 (2009). [CrossRef]
  6. M. Rosenberger, S. Belle, and R. Hellmann, “Detection of biochemical reaction and DNA hybridization using a planar Bragg grating sensor,” Proc. SPIE8073, 80730C, 80730C-7 (2011). [CrossRef]
  7. K. Hill and G. Meltz, “Fiber Bragg grating technology fundamentals and overview,” J. Lightwave Technol.15(8), 1263–1276 (1997). [CrossRef]
  8. G. Emmerson, S. Watts, C. Gawith, V. Albanis, C. Riziotis, A. Fu, M. Ibsen, R. B. Williams, and P. G. Smith, “Directly UV-written planar channel waveguides containing simultaneously defined Bragg gratings,” Opt. Fiber Comm. Conf. MF52 (2003).
  9. G. Emmerson, C. Gawith, S. Watts, R. Williams, P. Smith, S. McMeekin, J. Bonar, and R. Laming, “All-UV-written integrated planar Bragg gratings and channel waveguides through single-step direct grating writing,” Proc Optoelectron, IEEE.151(2), 119–122 (2004). [CrossRef]
  10. G. Emmerson, S. Watts, C. Gawith, V. Albanis, M. Ibsen, R. Williams, and P. Smith, “Fabrication of directly UV-written channel waveguides with simultaneously defined integral Bragg gratings,” Electron. Lett.38(24), 1531–1532 (2002). [CrossRef]
  11. L. Eldada and L. W. Shacklette, “Advances in polymer integrated optics,” IEEE J. Sel. Top. Quantum Electron.6(1), 54–68 (2000). [CrossRef]
  12. N. G. Harbach, “Fiber Bragg gratings in polymer optical fibers” Ecole Polytechnique Federale de Lausanne (2008).
  13. C. Zhang, X. Chen, D. J. Webb, and G.-D. Peng, “Water detection in jet fuel using a polymer optical fibre Bragg grating,” Proc. SPIE7503, 750380, 750380-4 (2009). [CrossRef]
  14. C. Zhang, W. Zhang, D. J. Webb, and G. D. Peng, “Optical fibre temperature and humidity sensor,” Electron. Lett.46(9), 643–644 (2010). [CrossRef]
  15. H. Y. Liu, G. D. Peng, and P. L. Chu, “Thermal tuning of polymer optical fiber Bragg gratings,” IEEE Photon. Technol. Lett.13(8), 824–826 (2001). [CrossRef]
  16. W. Zhang, D. Webb, and G. Peng, “Investigation into time response of polymer fiber Bragg grating based humidity sensors,” J. Lightwave Technol.30(8), 1090–1096 (2012). [CrossRef]
  17. W. Yuan, A. Stefani, M. Bache, T. Jacobsen, B. Rose, N. Herholdt-Rasmussen, F. K. Nielsen, S. Andresen, O. B. Sørensen, K. S. Hansen, and O. Bang, “Improved thermal and strain performance of annealed polymer optical fiber Bragg gratings,” Opt. Commun.284(1), 176–182 (2011). [CrossRef]
  18. W. Yuan, A. Stefani, and O. Bang, “Tunable polymer fiber Bragg grating (FBG) inscription: fabrication of dual-FBG temperature compensated polymer optical fiber strain sensors,” IEEE Photon. Technol. Lett.24(5), 401–403 (2012). [CrossRef]
  19. I. P. Johnson, W. Yuan, A. Stefani, K. Nielsen, H. K. Rasmussen, L. Khan, D. J. Webb, K. Kalli, and O. Bang, “Optical fibre Bragg grating recorded in TOPAS cyclic olefin copolymer,” Electron. Lett.47(4), 271–272 (2011). [CrossRef]
  20. A. Stefani, S. Andresen, W. Yuan, N. Herholdt-Rasmussen, and O. Bang, “High sensitivity polymer optical fiber-Bragg-grating-based accelerometer,” IEEE Photon. Technol. Lett.24(9), 763–765 (2012). [CrossRef]
  21. L. Rindorf, P. E. Høiby, J. B. Jensen, L. H. Pedersen, O. Bang, and O. Geschke, “Towards biochips using microstructured optical fiber sensors,” Anal. Bioanal. Chem.385(8), 1370–1375 (2006). [CrossRef] [PubMed]
  22. W. J. Tomlinson, “Photoinduced refractive index increase in Poly(methylmethacrylate) and its applications,” Appl. Phys. Lett.16(12), 486 (1970). [CrossRef]
  23. A. Baum, P. J. Scully, W. Perrie, M. Sharp, K. G. Watkins, D. Jones, R. Issac, and D. A. Jaroszynski “NUV and NIR femtosecond laser modification of PMMA,” Proc. LPM2007, (2007).
  24. D. G. Rabus, P. Henzi, and J. Mohr, “Photonic integrated circuits by DUV-induced modification of polymers,” IEEE Photon. Technol. Lett.17(3), 591–593 (2005). [CrossRef]
  25. E. Gaganidze, K. Litfin, J. Boehm, and S. Finke, “Fabrication and characterization of single-mode integrated polymer waveguide components,” Proc. SPIE5451, 32–39 (2004). [CrossRef]
  26. M. Koerdt and F. Vollertsen, “Fabrication of an integrated optical Mach–Zehnder interferometer based on refractive index modification of polymethylmethacrylate by krypton fluoride excimer laser radiation,” Appl. Surf. Sci.257(12), 5237–5240 (2011). [CrossRef]
  27. C. Wochnowski, M. Shamseldin, and S. Metev, “UV-laser-assisted degradation of poly(methyl methacrylate),” Polym. Degrad. Stabil.89(2), 252–264 (2005). [CrossRef]
  28. M. Shams-el-Din, C. Wochnowski, S. Metev, A. A. Hamza, and W. Jüptner, “Determination of the refractive index depth profile of an UV-laser generated waveguide in a planar polymer chip,” Appl. Surf. Sci.236(1-4), 31–41 (2004). [CrossRef]
  29. C. Wochnowski, M. Shamseldin, S. Metev, A. Hamza, and W. Juptner, “Mode field distribution of an integrated-optical waveguide generated by UV-laser radiation at the surface of a planar polymer chip,” Opt. Commun.262(1), 57–67 (2006). [CrossRef]
  30. G. Meltz, W. W. Morey, and W. H. Glenn, “Formation of Bragg gratings in optical fibers by a transverse holographic method,” Opt. Lett.14(15), 823–825 (1989). [CrossRef] [PubMed]
  31. D. Z. Anderson, V. Mizrahi, T. Erdogan, and A. E. White, “Production of in-fibre gratings using a diffractive optical element,” Electron. Lett.29(6), 566–568 (1993). [CrossRef]
  32. M. Koerdt, Herstellung von integiert-optischen Sensorstrukturen in Polymersubstraten basierend auf Brechzahländerungen durch ultraviolette Laserstrahlung (BIAS Verlag Bremen, 2011).
  33. C. Wochnowski, M. Abuelqomsan, W. Pieper, K. Meteva, S. Metev, G. Wenke, and F. Vollertsen, “UV-laser assisted fabrication of Bragg sensor components in a planar polymer chip,” Sens. Actua. A.120(1), 44–52 (2005). [CrossRef]
  34. T. Ishigure, E. Nihei, and Y. Koike, “Optimum refractive-index profile of the graded-index polymer optical fiber, toward gigabit data links,” Appl. Opt.35(12), 2048–2053 (1996). [CrossRef] [PubMed]
  35. Raman Kashyap, Fiber Bragg Gratings (Academic Press, 2010).
  36. C. Wochnowski, M. T. Kouamo, W. Pieper, K. Meteva, S. Metev, G. Wenke, and F. Vollertsen, “Fabrication of a planar polymeric deformation Bragg sensor component by excimer laser radiation,” IEEE J. Sens.6(2), 331–339 (2006). [CrossRef]
  37. W. Yuan, L. Khan, D. J. Webb, K. Kalli, H. K. Rasmussen, A. Stefani, and O. Bang, “Humidity insensitive TOPAS polymer fiber Bragg grating sensor,” Opt. Express19(20), 19731–19739 (2011). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited