OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 25 — Dec. 3, 2012
  • pp: 27327–27336

Plasmonic nano-antenna a-Si:H solar cell

Marcel Di Vece, Yinghuan Kuang, Stephan N.F. van Duren, Jamie M. Charry, Lourens van Dijk, and Ruud E.I. Schropp  »View Author Affiliations

Optics Express, Vol. 20, Issue 25, pp. 27327-27336 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1696 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



In this work the effects of plasmonics, nano-focusing, and orthogonalization of carrier and photon pathways are simultaneously explored by measuring the photocurrents in an elongated nano-scale solar cell with a silver nanoneedle inside. The silver nanoneedles formed the support of a conformally grown hydrogenated amorphous silicon (a-Si:H) n-i-p junction around it. A spherical morphology of the solar cell functions as a nano-lens, focusing incoming light directly on the silver nanoneedle. We found that plasmonics, geometric optics, and Fresnel reflections affect the nanostructured solar cell performance, depending strongly on light incidence angle and polarization. This provides valuable insight in solar cell processes in which novel concepts such as plasmonics, elongated nanostructures, and nano-lenses are used.

© 2012 OSA

OCIS Codes
(310.0310) Thin films : Thin films
(160.4236) Materials : Nanomaterials
(220.4241) Optical design and fabrication : Nanostructure fabrication
(160.5335) Materials : Photosensitive materials

ToC Category:
Solar Energy

Original Manuscript: November 1, 2012
Manuscript Accepted: November 2, 2012
Published: November 20, 2012

Marcel Di Vece, Yinghuan Kuang, Stephan N.F. van Duren, Jamie M. Charry, Lourens van Dijk, and Ruud E.I. Schropp, "Plasmonic nano-antenna a-Si:H solar cell," Opt. Express 20, 27327-27336 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. A. Green, Third Generation Photovoltaics: Ultra high Efficiency at Low Cost (Springer-Verlag, Berlin, 2003).
  2. G. Conibeer, “Third-generation photovoltaics,” Mater. Today10(11), 42–50 (2007). [CrossRef]
  3. E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science311(5758), 189–193 (2006). [CrossRef] [PubMed]
  4. S. A. Maier, M. L. Brongersma, P. G. Kik, S. Meltzer, A. A. G. Requicha, and H. A. Atwater, “Plasmonics: a route to nanoscale optical devices,” Adv. Mater. (Deerfield Beach Fla.)13(19), 1501–1505 (2001). [CrossRef]
  5. H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater.9(3), 205–213 (2010). [CrossRef] [PubMed]
  6. R. A. Pala, J. White, E. Barnard, J. Liu, and M. L. Brongersma, “Design of plasmonic thin-film solar cells with broadband absorption enhancements,” Adv. Mater. (Deerfield Beach Fla.)21(34), 3504–3509 (2009). [CrossRef]
  7. S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, “Surface plasmon enhanced silicon solar cells,” J. Appl. Phys.101(9), 093105 (2007). [CrossRef]
  8. D. M. Schaadt, B. Feng, and E. T. Yu, “Enhanced semiconductor optical absorption via surface plasmon excitation in metal nanoparticles,” Appl. Phys. Lett.86(6), 063106 (2005). [CrossRef]
  9. B. P. Rand, P. Peumans, and S. R. Forrest, “Long-range absorption enhancement in organic tandem thin-film solar cells containing silver nanoclusters,” J. Appl. Phys.96(12), 7519–7526 (2004). [CrossRef]
  10. V. E. Ferry, J. N. Munday, and H. A. Atwater, “Design considerations for plasmonic photovoltaics,” Adv. Mater. (Deerfield Beach Fla.)22(43), 4794–4808 (2010). [CrossRef] [PubMed]
  11. S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, “Surface plasmon enhanced silicon solar cells,” J. Appl. Phys.101(9), 093105 (2007). [CrossRef]
  12. H. R. Stuart and D. G. Hall, “Island size effects in nanoparticle-enhanced photodetectors,” Appl. Phys. Lett.73(26), 3815–3817 (1998). [CrossRef]
  13. H. R. Stuart and D. G. Hall, “Absorption enhancement in silicon-on-insulator waveguides using metal island films,” Appl. Phys. Lett.69(16), 2327–2329 (1996). [CrossRef]
  14. O. Stenzel, A. Stendal, K. Voigtsberger, and C. von Borczyskowski, “Enhancement of the photovoltaic conversion efficiency of copper phthalocyanine thin film devices by incorporation of metal clusters,” Sol. Energy Mater. Sol. Cells37(3-4), 337–348 (1995). [CrossRef]
  15. M. Westphalen, U. Kreibig, J. Rostalski, H. Lüth, and D. Meissner, “Metal cluster enhanced organic solar cells,” Sol. Energy Mater. Sol. Cells61(1), 97–105 (2000). [CrossRef]
  16. Y. A. Akimov, W. S. Koh, and K. Ostrikov, “Enhancement of optical absorption in thin-film solar cells through the excitation of higher-order nanoparticle plasmon modes,” Opt. Express17(12), 10195–10205 (2009). [CrossRef] [PubMed]
  17. V. E. Ferry, M. A. Verschuuren, H. B. T. Li, E. Verhagen, R. J. Walters, R. E. I. Schropp, H. A. Atwater, and A. Polman, “Light trapping in ultrathin plasmonic solar cells,” Opt. Express18(S2Suppl 2), A237–A245 (2010). [CrossRef] [PubMed]
  18. V. E. Ferry, M. A. Verschuuren, M. C. Lare, R. E. I. Schropp, H. A. Atwater, and A. Polman, “Optimized spatial correlations for broadband light trapping nanopatterns in high efficiency ultrathin film a-Si:H solar cells,” Nano Lett.11(10), 4239–4245 (2011). [CrossRef] [PubMed]
  19. E. S. Barnard, R. A. Pala, and M. L. Brongersma, “Photocurrent mapping of near-field optical antenna resonances,” Nat. Nanotechnol.6(9), 588–593 (2011). [CrossRef] [PubMed]
  20. J. N. Munday and H. A. Atwater, “Large integrated absorption enhancement in plasmonic solar cells by combining metallic gratings and antireflection coatings,” Nano Lett.11(6), 2195–2201 (2011). [CrossRef] [PubMed]
  21. M. J. Naughton, K. Kempa, Z. F. Ren, Y. Gao, J. Rybczynski, N. Argenti, W. Gao, Y. Wang, Y. Peng, J. R. Naughton, G. McMahon, T. Paudel, Y. C. Lan, M. J. Burns, A. Shepard, M. Clary, C. Ballif, F.-J. Haug, T. Söderström, O. Cubero, and C. Eminian, “Efficient nanocoax-based solar cells,” Phys. Status Solidi4(7), 181–183 (2010) (RRL). [CrossRef]
  22. J. Zhu, Z. Yu, G. F. Burkhard, C. M. Hsu, S. T. Connor, Y. Xu, Q. Wang, M. McGehee, S. Fan, and Y. Cui, “Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays,” Nano Lett.9(1), 279–282 (2009). [CrossRef] [PubMed]
  23. Y. Lu and A. Lal, “High-efficiency ordered silicon nano-conical-frustum array solar cells by self-powered parallel electron lithography,” Nano Lett.10(11), 4651–4656 (2010). [CrossRef] [PubMed]
  24. J. Zhu, C. M. Hsu, Z. Yu, S. Fan, and Y. Cui, “Nanodome solar cells with efficient light management and self-cleaning,” Nano Lett.10(6), 1979–1984 (2010). [CrossRef] [PubMed]
  25. Z. Fan, H. Razavi, J. W. Do, A. Moriwaki, O. Ergen, Y. L. Chueh, P. W. Leu, J. C. Ho, T. Takahashi, L. A. Reichertz, S. Neale, K. Yu, M. Wu, J. W. Ager, and A. Javey, “Three-dimensional nanopillar-array photovoltaics on low-cost and flexible substrates,” Nat. Mater.8(8), 648–653 (2009). [CrossRef] [PubMed]
  26. J. Li, H. Yu, S. M. Wong, G. Zhang, X. Sun, P. G. Lo, and D. Kwong, “Si nanopillar array optimization on Si thin films for solar energy harvesting,” Appl. Phys. Lett.95(3), 033102 (2009). [CrossRef]
  27. B. M. Kayes, H. A. Atwater, and N. S. Lewis, “Comparison of the device physics principles of planar and radial p-n junction nanorod solar cells,” J. Appl. Phys.97(11), 114302 (2005). [CrossRef]
  28. J. M. Spurgeon, H. A. Atwater, and N. S. Lewis, “A Comparison between the behavior of nanorod array and planar Cd(Se, Te) photoelectrodes,” J. Phys. Chem. C112(15), 6186–6193 (2008). [CrossRef]
  29. D. Kieven, T. Dittrich, A. Belaidi, J. Tornow, K. Schwarzburg, N. Allsop, and M. Lux-Steiner, “Effect of internal surface area on the performance of ZnO/In[sub 2]S[sub 3]/CuSCN solar cells with extremely thin absorber,” Appl. Phys. Lett.92(15), 153107 (2008). [CrossRef]
  30. A. Belaidi, T. Dittrich, D. Kieven, J. Tornow, K. Schwarzburg, and M. Lux-Steiner, “Influence of the local absorber layer thickness on the performance of ZnO nanorod solar cells,” Phys. Status Solidi2(4), 172–174 (2008) (RRL). [CrossRef]
  31. Y. Kuang, K. H. M. van der Werf, Z. S. Houweling, and R. E. I. Schropp, “Nanorod solar cell with an ultrathin a-Si:H absorber layer,” Appl. Phys. Lett.98(11), 113111 (2011). [CrossRef]
  32. V. Sivakov, G. Andrä, A. Gawlik, A. Berger, J. Plentz, F. Falk, and S. H. Christiansen, “Silicon nanowire-based solar cells on glass: synthesis, optical Properties, and cell parameters,” Nano Lett.9(4), 1549–1554 (2009). [CrossRef] [PubMed]
  33. L. Tsakalakos, J. Balch, J. Fronheiser, B. A. Korevaar, O. Sulima, and J. Rand, “Silicon nanowire solar cells,” Appl. Phys. Lett.91(23), 233117 (2007). [CrossRef]
  34. M. Law, L. E. Greene, J. C. Johnson, R. Saykally, and P. Yang, “Nanowire dye-sensitized solar cells,” Nat. Mater.4(6), 455–459 (2005). [CrossRef] [PubMed]
  35. M. D. Kelzenberg, S. W. Boettcher, J. A. Petykiewicz, D. B. Turner-Evans, M. C. Putnam, E. L. Warren, J. M. Spurgeon, R. M. Briggs, N. S. Lewis, and H. A. Atwater, “Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications,” Nat. Mater.9(3), 239–244 (2010). [PubMed]
  36. B. Tian, X. Zheng, T. J. Kempa, Y. Fang, N. Yu, G. Yu, J. Huang, and C. M. Lieber, “Coaxial silicon nanowires as solar cells and nanoelectronic power sources,” Nature449(7164), 885–889 (2007). [CrossRef] [PubMed]
  37. E. Garnett and P. Yang, “Light trapping in silicon nanowire solar cells,” Nano Lett.10(3), 1082–1087 (2010). [CrossRef] [PubMed]
  38. R. E. I. Schropp, “Status of Cat-CVD (Hot-Wire CVD) research in Europe,” Thin Solid Films395(1-2), 17–24 (2001). [CrossRef]
  39. L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge University Press, 2008).
  40. R. E. I. Schropp, K. F. Feenstra, E. C. Molenbroek, H. Meiling, and J. K. Rath, “Device-quality polycrystalline and amorphous silicon films by hot-wire chemical vapour deposition,” Philos. Mag. B76(3), 309–321 (1997). [CrossRef]
  41. M. K. van Veen, C. H. M. van der Werf, J. K. Rath, and R. E. I. Schropp, “Incorporation of amorphous and microcrystalline silicon in n–i–p solar cells,” Thin Solid Films430(1-2), 216–219 (2003). [CrossRef]
  42. B. J. Messinger, K. U. von Raben, R. K. Chang, and P. W. Barber, “Local fields at the surface of noble-metal microspheres,” Phys. Rev. B24(2), 649–657 (1981). [CrossRef]
  43. U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters (Springer, Berlin, 1995).
  44. E. R. Encina, E. M. Perassi, and E. A. Coronado, “Near-field enhancement of multipole plasmon resonances in Ag and Au nanowires,” J. Phys. Chem. A113(16), 4489–4497 (2009). [CrossRef] [PubMed]
  45. Y. Lee, A. Alu, and J. X. J. Zhang, “Efficient apertureless scanning probes using patterned plasmonic surfaces,” Opt. Express19(27), 25990–25999 (2011). [CrossRef] [PubMed]
  46. S. Berweger, J. M. Atkin, R. L. Olmon, and R. B. Raschke, “Light on the tip of a Needle: plasmonic nanofocusing for spectroscopy on the nanoscale,” Phys. Chem. Lett.3(7), 945–952 (2012). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited