OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 25 — Dec. 3, 2012
  • pp: 27410–27419

Refractive index-modified structures in glass written by 266nm fs laser pulses

Ali Saliminia, Jean-Philippe Bérubé, and Réal Vallée  »View Author Affiliations

Optics Express, Vol. 20, Issue 25, pp. 27410-27419 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1178 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We demonstrate the inscription of embedded waveguides, anti-waveguides and Bragg gratings by use of intense femtosecond (fs) UV laser pulses at 266nm in pure fused silica, and for the first time, in bulk fused quartz and ZBLAN glasses. The magnitude of induced index changes, depends, besides pulse energy and translation speed, largely on writing depth and varies from ~10−4 for smooth modifications to ~10−3 for damaged structures. The obtained results are promising as they present the feasibility of fabrication of short (< 0.2μm) period first-order fiber Bragg gratings (FBGs) for applications such as in realization of all-fiber lasers operating at short wavelengths.

© 2012 OSA

OCIS Codes
(160.2750) Materials : Glass and other amorphous materials
(320.7090) Ultrafast optics : Ultrafast lasers

ToC Category:
Laser Microfabrication

Original Manuscript: September 18, 2012
Manuscript Accepted: November 4, 2012
Published: November 26, 2012

Ali Saliminia, Jean-Philippe Bérubé, and Réal Vallée, "Refractive index-modified structures in glass written by 266nm fs laser pulses," Opt. Express 20, 27410-27419 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. G. Meltz, W. W. Morey, and W. H. Glenn, “Formation of Bragg gratings in optical fibers by a transverse holographic method,” Opt. Lett.14(15), 823–825 (1989). [CrossRef] [PubMed]
  2. K. O. Hill, B. Malo, F. Bilodeau, D. C. Johnson, and J. Albert, “Bragg gratings fabricated in mono-mode photosensitive optical fiber by UV exposure through a phase mask,” Appl. Phys. Lett.62(10), 1035–1037 (1993). [CrossRef]
  3. J. Albert, B. Malo, F. Bilodeau, D. C. Johnson, K. O. Hill, Y. Hibino, and M. Kawachi, “Photosensitivity in Ge-doped silica optical waveguides and fibers with 193-nm light from an Ar-F excimer laser,” Opt. Lett.19(6), 387–389 (1994). [PubMed]
  4. K. P. Chen, P. R. Herman, R. Taylor, and C. Hnatovsky, “Vacuum-ultraviolet laser-induced refractive index change and birefringence in standard optical fibers,” J. Lightwave Technol.21(9), 1969–1977 (2003). [CrossRef]
  5. D. P. Hand and P. S. J. Russell, “Photoinduced refractive-index changes in germanosilicate fibers,” Opt. Lett.15(2), 102–104 (1990). [CrossRef] [PubMed]
  6. M. Douay, W. X. Xie, T. Taunay, P. Bernage, P. Niay, P. Cordier, B. Poumellec, L. Dong, J. F. Bayon, H. Poignant, and E. Delevaque, “Densification involved in the UV based photosensitivity of silica glasses and optical fibers,” J. Lightwave Technol.15(8), 1329–1342 (1997). [CrossRef]
  7. J. Albert, M. Fokine, and W. Margulis, “Grating formation in pure silica-core fibers,” Opt. Lett.27(10), 809–811 (2002). [CrossRef] [PubMed]
  8. T. Taunay, P. Niay, P. Bernage, E. X. Xie, H. Poignant, S. Boj, E. Delevaque, and M. Monerie, “Ultraviolet-induced permanent Bragg gratings in cerium-doped ZBLAN glasses or optical fibers,” Opt. Lett.19(17), 1269–1271 (1994). [CrossRef] [PubMed]
  9. G. M. Williams, T.-E. Tsai, C. I. Merzbacher, and E. J. Friebele, “Photosensitivity of rare-earth-doped ZBLAN fluoride glasses,” J. Lightwave Technol.15(8), 1357–1362 (1997). [CrossRef]
  10. M. Zeller, T. Lasser, H. G. Limberger, and G. Maze, “UV-induced index changes in non-doped fluoride glasses,” J. Lightwave Technol.23(2), 624–627 (2005). [CrossRef]
  11. K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, “Writing waveguides in glass with a femtosecond laser,” Opt. Lett.21(21), 1729–1731 (1996). [CrossRef] [PubMed]
  12. S. J. Mihailov, C. W. Smelser, P. Lu, R. B. Walker, D. Grobnic, H. Ding, G. Henderson, and J. Unruh, “Fiber Bragg gratings made with a phase mask and 800-nm femtosecond radiation,” Opt. Lett.28(12), 995–997 (2003). [CrossRef] [PubMed]
  13. Y. Kondo, K. Nouchi, T. Mitsuyu, M. Watanabe, P. G. Kazansky, and K. Hirao, “Fabrication of long-period fiber gratings by focused irradiation of infrared femtosecond laser pulses,” Opt. Lett.24(10), 646–648 (1999). [CrossRef] [PubMed]
  14. K. Miura, J. Qiu, T. Mitsuyu, and K. Hirao, “Preparation and optical properties of fluoride glass waveguides induced by laser pulses,” J. Non-Cryst. Solids256, 212–219 (1999). [CrossRef]
  15. S. J. Mihailov, C. W. Smelser, D. Grobnic, R. B. Walker, P. Lu, H. Ding, and J. Unruh, “Bragg gratings written in all-SiO2 and Ge-doped core fibers with 800-nm femtosecond radiation and a phase mask,” J. Lightwave Technol.22(1), 94–100 (2004). [CrossRef]
  16. M. Bernier, D. Faucher, R. Vallée, A. Saliminia, G. Androz, Y. Sheng, and S. L. Chin, “Bragg gratings photoinduced in ZBLAN fibers by femtosecond pulses at 800 nm,” Opt. Lett.32(5), 454–456 (2007). [CrossRef] [PubMed]
  17. R. Sramek, F. Smektala, W. X. Xie, M. Douay, and P. Niay, “Photoinduced surface expansion of fluorozirconate glasses,” J. Non-Cryst. Solids277(1), 39–44 (2000). [CrossRef]
  18. A. Dragomir, D. N. Nikogosyan, K. A. Zagorulko, P. G. Kryukov, and E. M. Dianov, “Inscription of fiber Bragg gratings by ultraviolet femtosecond radiation,” Opt. Lett.28(22), 2171–2173 (2003). [CrossRef] [PubMed]
  19. K. A. Zagorulko, P. G. Kryukov, Y. V. Larionov, A. A. Rybaltovsky, E. M. Dianov, S. Chekalin, Y. Matveets, and V. Kompanets, “Fabrication of fiber Bragg gratings with 267 nm femtosecond radiation,” Opt. Express12(24), 5996–6001 (2004). [CrossRef] [PubMed]
  20. L. B. Fu, G. D. Marshall, J. A. Bolger, P. Stainvurzel, E. C. Magi, M. J. Withford, and B. J. Eggleton, “Femtosecond laser writing Bragg gratings in pure silica photonic crystal fibers,” Electron. Lett.41(11), 638–640 (2005). [CrossRef]
  21. M. Livitziis and S. Pissadakis, “Bragg grating recording in low-defect optical fibers using ultraviolet femtosecond radiation and a double-phase mask interferometer,” Opt. Lett.33(13), 1449–1451 (2008). [CrossRef] [PubMed]
  22. M. Becker, J. Bergmann, S. Brückner, M. Franke, E. Lindner, M. W. Rothhardt, and H. Bartelt, “Fiber Bragg grating inscription combining DUV sub-picosecond laser pulses and two-beam interferometry,” Opt. Express16(23), 19169–19178 (2008). [CrossRef] [PubMed]
  23. M. Dubov, I. Bennion, D. N. Nikogosyan, P. Bolger, and A. V. Zayats, “Point-by-point inscription of 250nm period structure in bulk fused silica by tightly focused femtosecond UV pulses,” J. Opt. A, Pure Appl. Opt.10(2), 025305–025310 (2008). [CrossRef]
  24. A. Barty, K. A. Nugent, D. Paganin, and A. Roberts, “Quantitative optical phase microscopy,” Opt. Lett.23(11), 817–819 (1998). [CrossRef] [PubMed]
  25. N. T. Nguyen, A. Saliminia, W. Liu, S. L. Chin, and R. Vallée, “Optical breakdown versus filamentation in fused silica by use of femtosecond infrared laser pulses,” Opt. Lett.28(17), 1591–1593 (2003). [CrossRef] [PubMed]
  26. A. Brodeur and S. L. Chin, “Ultrafast white-light continuum generation and self-focusing in transparent condensed media,” J. Opt. Soc. Am. B16(4), 637–650 (1999). [CrossRef]
  27. H. B. Sun, S. Juodkazis, M. Watanabe, S. Matsuo, H. Misawa, and J. Nishii, “Generation and recombination of defects in vitreous silica induced by irradiation with a near-infrared femtosecond laser,” J. Phys. Chem. B104(15), 3450–3455 (2000). [CrossRef]
  28. B. M. Levy and J. H. O. Varley, “Radiation induced colour centres in Fused Quartz,” Proc. Phys. Soc. B68(4), 223–233 (1955). [CrossRef]
  29. J. W. Chan, T. Huser, S. Risbud, and D. M. Krol, “Structural changes in fused silica after exposure to focused femtosecond laser pulses,” Opt. Lett.26(21), 1726–1728 (2001). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited