OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 25 — Dec. 3, 2012
  • pp: 27429–27441

Position measurement of non-integer OAM beams with structurally invariant propagation

A. M. Nugrowati, W. G. Stam, and J. P. Woerdman  »View Author Affiliations


Optics Express, Vol. 20, Issue 25, pp. 27429-27441 (2012)
http://dx.doi.org/10.1364/OE.20.027429


View Full Text Article

Enhanced HTML    Acrobat PDF (2329 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present a design to generate structurally propagation invariant light beams carrying non-integer orbital angular momentum (OAM) using Hermite-Laguerre-Gaussian (HLG) modes. Different from previous techniques, the symmetry axes of our beams are fixed when varying the OAM; this simplifies the calibration technique for beam positional measurement using a quadrant detector. We have also demonstrated analytically and experimentally that both the OAM value and the HLG mode orientation play an important role in the quadrant detector response. The assumption that a quadrant detector is most sensitive at the beam center does not always hold for anisotropic beam profiles, such as HLG beams.

© 2012 OSA

OCIS Codes
(040.5160) Detectors : Photodetectors
(120.4640) Instrumentation, measurement, and metrology : Optical instruments
(260.6042) Physical optics : Singular optics

ToC Category:
Physical Optics

History
Original Manuscript: September 19, 2012
Revised Manuscript: November 1, 2012
Manuscript Accepted: November 1, 2012
Published: November 26, 2012

Citation
A. M. Nugrowati, W. G. Stam, and J. P. Woerdman, "Position measurement of non-integer OAM beams with structurally invariant propagation," Opt. Express 20, 27429-27441 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-25-27429


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. E. Abramochkin and V. Volostnikov, “Beam transformation and nontransformed beams,” Opt. Commun.83, 123–125 (1991). [CrossRef]
  2. L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A45, 8185–8189 (1992). [CrossRef] [PubMed]
  3. H. He, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical particle trapping with higher-order doughnut beams produced using high efficiency computer generated holograms,” J. Mod. Opt.42, 217–223 (1995). [CrossRef]
  4. M. Padgett and R. Bowman, “Tweezers with a twist,” Nat. Photonics5, 343–348 (2011). [CrossRef]
  5. S. S. R. Oemrawsingh, X. Ma, D. Voigt, A. Aiello, E. R. Eliel, G. W. ’tHooft, and J. P. Woerdman, “Experimental demonstration of fractional orbital angular momentum entanglement of two photons,” Phys. Rev. Lett.95, 240501 (2005). [CrossRef] [PubMed]
  6. B. J. Pors, F. Miatto, G. W. ’t Hooft, E. R. Eliel, and J. P. Woerdman, “High-dimensional entanglement with orbital-angular-momentum states of light,” J. Opt.13, 064008 (2011). [CrossRef]
  7. J. Sato, M. Endo, S. Yamaguchi, K. Nanri, and T. Fujioka, “Simple annular-beam generator with a laser-diode-pumped axially off-set power build-up cavity,” Opt. Commun.277, 342–348 (2007). [CrossRef]
  8. G. C. G. Berkhout and M. Beijersbergen, “Measuring optical vortices in a speckle pattern using a multi-pinhole interferometer,” Opt. Express18, 13836–13841 (2010). [CrossRef] [PubMed]
  9. F. Tamburini, B. Thidé, G. Molina-Terriza, and G. Anzolin, “Twisting of light around rotating black holes,” Nat. Phys.7, 195–197 (2011). [CrossRef]
  10. M. Merano, N. Hermosa, J. P. Woerdman, and A. Aiello, “How orbital angular momentum affects beam shifts in optical reflection,” Phys. Rev. A82, 023817 (2010). [CrossRef]
  11. S. Fürhapter, A. Jesacher, S. Bernet, and M. Ritsch-Marte, “Spiral phase contrast imaging in microscopy,” Opt. Express13, 689–694 (2005). [CrossRef] [PubMed]
  12. M. W. Beijersbergen, L. Allen, H. E. L. O. van der Veen, and J. P. Woerdman, “Astigmatic laser mode converters and transfer of orbital angular momentum,” Opt. Commun.96, 123–132 (1993). [CrossRef]
  13. M. W. Beijersbergen, R. P. C. Coerwinkel, M. Kristensen, and J. P. Woerdman, “Helical-wavefront laser beams produced with a spiral phaseplate,” Opt. Commun.112, 321–327 (1994). [CrossRef]
  14. G. A. Turnbull, D. A. Robertson, G. M. Smith, L. Allen, and M. J. Padgett, “The generation of free-space Laguerre-Gaussian modes at millimetre-wave frequencies by use of a spiral phaseplate,” Opt. Commun.127, 183–188 (1996). [CrossRef]
  15. J. Arlt, K. Dholakia, L. Allen, and M. J. Padgett, “The production of multiringed Laguerre-Gaussian modes by computer-generated holograms,” J. Mod. Opt.45, 1231–1237 (1998). [CrossRef]
  16. L. Marrucci, C. Manzo, and D. Paparo, “Optical spin-to-orbital angular momentum conversion in inhomogeneous anisotropic media,” Phys. Rev. Lett.96, 163905 (2006). [CrossRef] [PubMed]
  17. G. Machavariani, N. Davidson, E. Hasman, S. Bilt, A. Ishaaya, and A. A. Friesem, “Efficient conversion of a Gaussian beam to a high purity helical beam,” Opt. Commun209, 265–271 (2002). [CrossRef]
  18. S. A. Kennedy, M. J. Szabo, H. Teslow, J. Z. Porterfield, and E. R. I. Abraham, “Creation of Laguerre-Gaussian laser modes using diffractive optics,” Phys. Rev. A66, 043801 (2002). [CrossRef]
  19. S.-C. Chu and K. Otsuka, “Doughnut-like beam generation of Laguerre-Gaussian mode with extremely high mode purity,” Opt. Commun.281, 1647–1653 (2008). [CrossRef]
  20. N. Matsumoto, T. Ando, T. Inoue, Y. Ohtake, N. Fukuchi, and T. Hara, “Generation of high-quality higher-order Laguerre-Gaussian beams using liquid-crystal-on-silicon spatial light modulators,” J. Opt. Soc. Am. A25, 1642–1651 (2008). [CrossRef]
  21. T. Ando, Y. Ohtake, N. Matsumoto, T. Inoue, and N. Fukuchi, “Mode purities of Laguerre–Gaussian beams generated via complex-amplitude modulation using phase-only spatial light modulators,” Opt. Lett34, 34–36 (2009). [CrossRef]
  22. M. V. Berry, “Optical vortices evolving from helicoidal integer and fractional phase steps,” J. Opt. A: Pure Appl. Opt.6, 259–268 (2004). [CrossRef]
  23. J. B. Götte, K. O’Holleran, D. Preece, F. Flossman, S. Franke-Arnold, S. M. Barnett, and M. J. Padgett, “Light beams with fractional orbital angular momentum and their vortex structure,” Opt. Express16, 993–1006 (2008). [CrossRef] [PubMed]
  24. D. P. O’Dwyer, C. F. Phelan, Y. P. Rakovich, P. R. Eastham, J. G. Lunney, and J. F. Donegan, “Generation of continuously tunable fractional optical orbital angular momentum using internal conical diffraction,” Opt. Express18, 16480–16485 (2010). [CrossRef]
  25. A. T. O’Neil and J. Courtial, “Mode transformations in terms of the constituent Hermite-Gaussian or LaguerreGaussian modes and the variable-phase mode converter,” Opt. Commun.181, 35–45 (2000). [CrossRef]
  26. E. G. Abramochkin and V. G. Volostnikov, “Generalized Gaussian beams,” J. Opt. A: Pure Appl. Opt.6, S157–S161 (2004). [CrossRef]
  27. J. Visser and G. Nienhuis, “Orbital angular momentum of general astigmatic modes,” Phys. Rev. A70, 013809 (2004). [CrossRef]
  28. E. G. Abramochkin, E. Razueva, and V. G. Volostnikov, “General astigmatic transform of Hermite-Laguerre-Gaussian beams,” J. Opt. Soc. Am. A27, 2506–2513 (2010). [CrossRef]
  29. E. J. Lee, Y. Park, C. S. Kim, and T. Kouh, “Detection sensitivity of the optical beam deflection method characterized with the optical spot size on the detector,” Curr. Appl. Phys.10, 834–837 (2010). [CrossRef]
  30. Y. Panduputra, T. W. Ng, A. Neild, and M. Robinson, “Intensity influence on Gaussian beam laser based measurements using quadrant photodiodes,” Appl. Opt.49, 3669–3675 (2010). [CrossRef] [PubMed]
  31. N. Hermosa, A. Aiello, and J. P. Woerdman, “Quadrant detector calibration for vortex beams,” Opt. Lett.36, 409–411 (2011). [CrossRef] [PubMed]
  32. S. J. M. Habraken, “Cylindrical lens mode converters and OAM,” Personal Communication (2010).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited