OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 25 — Dec. 3, 2012
  • pp: 27482–27495

Computational superposition compound eye imaging for extended depth-of-field and field-of-view

Tomoya Nakamura, Ryoichi Horisaki, and Jun Tanida  »View Author Affiliations

Optics Express, Vol. 20, Issue 25, pp. 27482-27495 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1879 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



This paper describes a superposition compound eye imaging system for extending the depth-of-field (DOF) and the field-of-view (FOV) using a spherical array of erect imaging optics and deconvolution processing. This imaging system had a three-dimensionally space-invariant point spread function generated by the superposition optics. A sharp image with a deep DOF and a wide FOV could be reconstructed by deconvolution processing with a single filter from a single captured image. The properties of the proposed system were confirmed by ray-trace simulations.

© 2012 OSA

OCIS Codes
(220.1000) Optical design and fabrication : Aberration compensation
(110.1758) Imaging systems : Computational imaging

ToC Category:
Imaging Systems

Original Manuscript: September 4, 2012
Revised Manuscript: November 2, 2012
Manuscript Accepted: November 14, 2012
Published: November 27, 2012

Virtual Issues
Vol. 8, Iss. 1 Virtual Journal for Biomedical Optics

Tomoya Nakamura, Ryoichi Horisaki, and Jun Tanida, "Computational superposition compound eye imaging for extended depth-of-field and field-of-view," Opt. Express 20, 27482-27495 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, 1996).
  2. J. E. R. Dowski and W. T. Cathey, “Extended depth of field through wave-front coding,” Appl. Opt.34, 1859–1866 (1995). [CrossRef] [PubMed]
  3. Y. Takahashi and S. Komatsu, “Optimized free-form phase mask for extension of depth of field in wavefront-coded imaging,” Opt. Lett.33, 1515–1517 (2008). [CrossRef] [PubMed]
  4. P. Mouroulis, “Depth of field extension with spherical optics,” Opt. Express16, 12995–13004 (2008). [CrossRef] [PubMed]
  5. O. Cossairt, C. Zhou, and S. K. Nayar, “Diffusion Coding Photography for Extended Depth of Field,” ACM Trans. Graph. (also Proc. of ACM SIGGRAPH) (2010).
  6. G. Häusler, “A method to increase the depth of focus by two step image processing,” Opt. Commun.6, 38–42 (1972). [CrossRef]
  7. S. Kuthirummal, H. Nagahara, C. Zhou, and S. K. Nayar, “Flexible depth of field photography,” IEEE Trans. Pattern Anal. Mach. Intell.33, 58–71 (2011). [CrossRef]
  8. D. J. Brady and N. Hagen, “Multiscale lens design,” Opt. Express17, 10659–10674 (2009). [CrossRef] [PubMed]
  9. D. L. Marks and D. J. Brady, “Gigagon: A monocentric lens design imaging 40 gigapixels,” in “Imaging Systems,” (Optical Society of America, 2010), p. ITuC2.
  10. O. Cossairt, D. Miau, and S. K. Nayar, “Gigapixel computational imaging,” in “IEEE International Conference on Computational Photography (ICCP),” (2011).
  11. G. Druart, N. Guérineau, R. Haïdar, S. Thétas, J. Taboury, S. Rommeluère, J. Primot, and M. Fendler, “Demonstration of an infrared microcamera inspired by Xenos peckii vision,” Appl. Opt.48, 3368–3374 (2009). [CrossRef] [PubMed]
  12. L. Li and A. Y. Yi, “Design and fabrication of a freeform microlens array for a compact large-field-of-view compound-eye camera,” Appl. Opt.51, 1843–1852 (2012). [CrossRef] [PubMed]
  13. D. J. Brady, M. E. Gehm, R. A. Stack, D. L. Marks, D. S. Kittle, D. R. Golish, E. M. Vera, and S. D. Feller, “Multiscale gigapixel photography,” Nature486, 386–389 (2012). [CrossRef] [PubMed]
  14. R. Horisaki, T. Nakamura, and J. Tanida, “Superposition imaging for three-dimensionally space-invariant point spread functions,” Appl. Phys. Express4, 112501 (2011). [CrossRef]
  15. T. Nakamura, R. Horisaki, and J. Tanida, “Experimental verification of computational superposition imaging for compensating defocus and off-axis aberrated images,” in “Computational Optical Sensing and Imaging,” (Optical Society of America, 2012), p. CM2B.4.
  16. S. Hiura, A. Mohan, and R. Raskar, “Krill-eye: Superposition compound eye for wide-angle imaging via grin lenses,” IPSJ Transactions on Computer Vision and Applications2, 186–199 (2010). [CrossRef]
  17. D. E. Nilsson, “A new type of imaging optics in compound eyes,” Nature332, 76–78 (1988). [CrossRef]
  18. E. J. Warrant and P. D. McIntyre, “Limitations to resolution in superposition eyes,” J. Comp. Physiol., A167, 785–803 (1990). [CrossRef]
  19. M. F. Land, F. A. Burton, and V. B. Meyer-Rochow, “The optical geometry of euphausiid eyes,” J. Comp. Physiol., A130, 49–62 (1979). [CrossRef]
  20. S. Laughlin and S. McGinness, “The structures of dorsal and ventral regions of a dragonfly retina,” Cell Tissue Res.188, 427–447 (1978). [CrossRef] [PubMed]
  21. J. W. Duparré and F. C. Wippermann, “Micro-optical artificial compound eyes,” Bioinspiration Biomimetics1, R1 (2006). [CrossRef]
  22. K. Stollberg, A. Brückner, J. Duparré, P. Dannberg, A. Bräuer, and A. Tünnermann, “The gabor superlens as an alternative wafer-level camera approach inspired by superposition compound eyes of nocturnal insects,” Opt. Express17, 15747–15759 (2009). [CrossRef] [PubMed]
  23. H. R. Fallah and A. Karimzadeh, “MTF of compound eye,” Opt. Express18, 12304–12310 (2010). [CrossRef] [PubMed]
  24. M. F. Land and D.-E. Nilsson, Animal Eyes (Oxford University Press, USA, 2002).
  25. J. Tanida, T. Kumagai, K. Yamada, S. Miyatake, K. Ishida, T. Morimoto, N. Kondou, D. Miyazaki, and Y. Ichioka, “Thin observation module by bound optics (TOMBO): Concept and experimental verification,” Appl. Opt.40, 1806–1813 (2001). [CrossRef]
  26. J. Duparré, P. Dannberg, P. Schreiber, A. Bräuer, and A. Tünnermann, “Thin compound-eye camera,” Appl. Opt.44, 2949–2956 (2005). [CrossRef] [PubMed]
  27. A. Brückner, J. Duparré, R. Leitel, P. Dannberg, A. Bräuer, and A. Tünnermann, “Thin wafer-level camera lenses inspired by insect compound eyes,” Opt. Express18, 24379–24394 (2010). [CrossRef] [PubMed]
  28. R. Horisaki, S. Irie, Y. Ogura, and J. Tanida, “Three-dimensional information acquisition using a compound imaging system,” Opt. Rev.14, 347–350 (2007). [CrossRef]
  29. R. Horisaki, K. Choi, J. Hahn, J. Tanida, and D. J. Brady, “Generalized sampling using a compound-eye imaging system for multi-dimensional object acquisition,” Opt. Express18, 19367–19378 (2010). [CrossRef] [PubMed]
  30. R. Dinyari, S.-B. Rim, K. Huang, P. B. Catrysse, and P. Peumans, “Curving monolithic silicon for nonplanar focal plane array applications,” Appl. Phys. Lett.92, 091114 (2008). [CrossRef]
  31. D. Dumas, M. Fendler, F. Berger, B. Cloix, C. Pornin, N. Baier, G. Druart, J. Primot, and E. le Coarer, “Infrared camera based on a curved retina,” Opt. Lett.37, 653–655 (2012). [CrossRef] [PubMed]
  32. “Zemax,” http://www.zemax.com/ .
  33. K.-H. Jeong, J. Kim, and L. P. Lee, “Biologically inspired artificial compound eyes,” Science312, 557–561 (2006). [CrossRef] [PubMed]
  34. D. Keum, J. Hyukjin, and J. Ki-Hun, “Planar emulation of natural compound eyes,” Small8, 2169–2173 (2012). [CrossRef] [PubMed]
  35. S. Maekawa, K. Nitta, and O. Matoba, “Transmissive optical imaging device with micromirror array,” in “Proceedings of the SPIE,” (2006), p. 63920E. [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited