OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 25 — Dec. 3, 2012
  • pp: 27503–27509

Versatile large-mode-area femtosecond laser-written Tm:ZBLAN glass chip lasers

D. G. Lancaster, S. Gross, A. Fuerbach, H. Ebendorff Heidepriem, T. M. Monro, and M. J. Withford  »View Author Affiliations


Optics Express, Vol. 20, Issue 25, pp. 27503-27509 (2012)
http://dx.doi.org/10.1364/OE.20.027503


View Full Text Article

Enhanced HTML    Acrobat PDF (2515 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report performance characteristics of a thulium doped ZBLAN waveguide laser that supports the largest fundamental modes reported in a rare-earth doped planar waveguide laser (to the best of our knowledge). The high mode quality of waveguides up to 45 um diameter (~1075 μm2 mode-field area) is validated by a measured beam quality of M2~1.1 ± 0.1. Benefits of these large mode-areas are demonstrated by achieving 1.9 kW peak-power output Q-switched pulses. The 1.89 μm free-running cw laser produces 205 mW and achieves a 67% internal slope efficiency corresponding to a quantum efficiency of 161%. The 9 mm long planar chip developed for concept demonstration is rapidly fabricated by single-step optical processing, contains 15 depressed-cladding waveguides, and can operate in semi-monolithic or external cavity laser configurations.

© 2012 OSA

OCIS Codes
(140.3070) Lasers and laser optics : Infrared and far-infrared lasers
(140.3390) Lasers and laser optics : Laser materials processing
(140.3580) Lasers and laser optics : Lasers, solid-state
(230.7380) Optical devices : Waveguides, channeled

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: September 25, 2012
Manuscript Accepted: November 4, 2012
Published: November 27, 2012

Citation
D. G. Lancaster, S. Gross, A. Fuerbach, H. Ebendorff Heidepriem, T. M. Monro, and M. J. Withford, "Versatile large-mode-area femtosecond laser-written Tm:ZBLAN glass chip lasers," Opt. Express 20, 27503-27509 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-25-27503


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. Taccheo, G. D. Valle, R. Osellame, G. Cerullo, N. Chiodo, P. Laporta, O. Svelto, A. Killi, U. Morgner, M. Lederer, and D. Kopf, “Er:Yb-doped waveguide laser fabricated by femtosecond laser pulses,” Opt. Lett.29(22), 2626–2628 (2004). [CrossRef] [PubMed]
  2. M. Ams, G. D. Marshall, P. Dekker, J. A. Piper, and M. J. Withford, “Ultrafast laser written active devices,” Laser & Photon. Rev.3(6), 535–544 (2009). [CrossRef]
  3. T. Calmano, J. Siebenmorgen, O. Hellmig, K. Petermann, and G. Huber, “Low loss depressed cladding waveguide inscribed in YAG: Nd single crystal by femtosecond laser pulses,” Appl. Phys. B100, 131–135 (2010). [CrossRef]
  4. C. Grivas, “Optically pumped planar waveguide lasers, Part I: Fundamentals and fabrication techniques,” IEEE Prog. Quantum Electron.35(6), 159–239 (2011). [CrossRef]
  5. J. D. Musgraves, K. Richardson, and J. Jain, “Laser-induced structural modification, its mechanisms, and applications in glassy optical materials,” Opt. Mater. Express1(5), 921–935 (2011). [CrossRef]
  6. X. Zhu and N. Peyghambarian, “High power ZBLAN fiber lasers: review and prospect,” Adv. Optoelectron.2010, 501956 (2010). [CrossRef]
  7. L. Wetenkamp, G. F. West, and H. Tobben, “Optical properties of rare earth-doped ZBLAN glasses,” J. Non-Cryst. Solids140, 35–40 (1992). [CrossRef]
  8. R. Paschotta, N. Moore, W. A. Clarkson, A. C. Tropper, D. C. Hanna, and G. Maze, “230 mW of blue light from a thulium-doped upconversion fiber laser,” IEEE J. Sel. Top. Quantum Electron.3(4), 1100–1102 (1997). [CrossRef]
  9. S. Tokita, M. Murakami, S. Shimizu, M. Hashida, and S. Sakabe, “Liquid-cooled 24 W mid-infrared Er:ZBLAN fiber laser,” Opt. Lett.34(20), 3062–3064 (2009). [CrossRef] [PubMed]
  10. J. Schneider, C. Carbonnier, and U. B. Unrau, “Characterization of a Ho3+-doped fluoride fiber laser with a 3.9-μm emission wavelength,” Appl. Opt.36(33), 8595–8600 (1997). [CrossRef] [PubMed]
  11. D. C. Tran, G. H. Sigel, and B. Bendow, “Heavy metal fluoride glasses and fibers: A review,” J. Lightwave Technol.2(5), 566–586 (1984). [CrossRef]
  12. S. F. Carter, M. W. Moore, D. Szebesta, J. R. Williams, D. Ranson, and P. W. France, “Low loss fluoride fiber by reduced pressure casting,” Electron. Lett.26(25), 2115–2117 (1990). [CrossRef]
  13. W. A. Gambling, “The rise and rise of optical fibers,” IEEE J. Sel. Top. Quantum Electron.6(6), 1084–1093 (2000). [CrossRef]
  14. J. L. Adam, F. Smektala, and J. Lucas, “Active fluoride glass optical waveguides for laser sources,” Opt. Mater.4(1), 85–90 (1994). [CrossRef]
  15. J. Colaizzi and M. J. Matthewson, “Mechanical durability of ZBLAN and aluminum fluoride-based optical fiber,” J. Lightwave Technol.12(8), 1317–1324 (1994). [CrossRef]
  16. O. Perrot, L. Guinvarc'h, D. Benhaddou, P. C. Montgomery, R. Rimet, B. Boulard, and C. Jacoboni, “Optical investigation of fluoride glass planar waveguides made by vapour phase deposition,” J. Non-Cryst. Solids184, 257–262 (1995). [CrossRef]
  17. J. D. Shephard, D. Furniss, P. A. Houston, and A. B. Seddon, “Fabrication of mid-infrared planar waveguides from compatible fluorozirconate glass pairs, via hot spin-casting,” J. Non-Cryst. Solids284(1-3), 160–167 (2001). [CrossRef]
  18. M. Waldmann, R. Caspary, D. Wortmann, J. Gottmann, and W. Kowalsky, “Erbium-doped fluoride glass waveguides,” Electron. Lett.44(20), 1193 (2008). [CrossRef]
  19. D. W. J. Harwood, A. Fu, E. R. Taylor, R. C. Moore, Y. D. West, and D. N. Payne, “A 1317nm neodymium doped fluoride glass waveguide laser,” ECOC 2000. 26th European Conference on Optical Communication 2, 191–2 (2000)
  20. D. G. Lancaster, S. Gross, H. Ebendorff-Heidepriem, K. Kuan, T. M. Monro, M. Ams, A. Fuerbach, and M. J. Withford, “Fifty percent internal slope efficiency femtosecond direct-written Tm³⁺:ZBLAN waveguide laser,” Opt. Lett.36(9), 1587–1589 (2011). [CrossRef] [PubMed]
  21. D. G. Lancaster, S. Gross, H. Ebendorff-Heidepriem, A. Fuerbach, M. J. Withford, and T. M. Monro, “2.1 μm waveguide laser fabricated by femtosecond laser direct-writing in Ho3+, Tm3+:ZBLAN glass,” Opt. Lett.37(6), 996–998 (2012). [CrossRef] [PubMed]
  22. M. Eichhorn and S. D. Jackson, “Comparative study of continuous wave Tm3+-doped silica and fluoride fiber lasers,” Appl. Phys. B90(1), 35–41 (2008). [CrossRef]
  23. K. van Dalfsen, S. Aravazhi, C. Grivas, S. M. García-Blanco, and M. Pollnau, “Thulium channel waveguide laser in a monoclinic double tungstate with 70% slope efficiency,” Opt. Lett.37(5), 887–889 (2012). [CrossRef] [PubMed]
  24. C. Schaffer, J. Garcia, and E. Mazur, “Bulk heating of transparent materials using a high-repetition-rate femtosecond laser,” Appl. Phys., A Mater. Sci. Process.76(3), 351–354 (2003). [CrossRef]
  25. B. M. Walsh and N. P. Barnes, “Comparison of Tm:ZBLAN and Tm:silica fiber lasers: Spectroscopy and tunable pulsed laser operation around 1.9 μm,” Appl. Phys. B78(3-4), 325–333 (2004). [CrossRef]
  26. J. Hu and C. R. Menyuk, “Understanding leaky modes: slab waveguide revisited,” Adv. Opt. Photon.1(1), 58–106 (2009). [CrossRef]
  27. D. Findlay and R. A. Clay, “The measurement of internal losses in 4-level lasers,” Phys. Lett.20(3), 277–278 (1966). [CrossRef]
  28. S. D. Jackson, “High-power and highly efficient diode-cladding-pumped holmium-doped fluoride fiber laser operating at 2.94 microm,” Opt. Lett.34(15), 2327–2329 (2009). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited