OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 25 — Dec. 3, 2012
  • pp: 27510–27519

Downconversion quantum interface for a single quantum dot spin and 1550-nm single-photon channel

Jason S. Pelc, Leo Yu, Kristiaan De Greve, Peter L. McMahon, Chandra M. Natarajan, Vahid Esfandyarpour, Sebastian Maier, Christian Schneider, Martin Kamp, Sven Höfling, Robert H. Hadfield, Alfred Forchel, Yoshihisa Yamamoto, and M. M. Fejer  »View Author Affiliations


Optics Express, Vol. 20, Issue 25, pp. 27510-27519 (2012)
http://dx.doi.org/10.1364/OE.20.027510


View Full Text Article

Enhanced HTML    Acrobat PDF (2128 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Long-distance quantum communication networks require appropriate interfaces between matter qubit-based nodes and low-loss photonic quantum channels. We implement a downconversion quantum interface, where the single photons emitted from a semiconductor quantum dot at 910 nm are downconverted to 1560 nm using a fiber-coupled periodically poled lithium niobate waveguide and a 2.2-μm pulsed pump laser. The single-photon character of the quantum dot emission is preserved during the downconversion process: we measure a cross-correlation g(2)(τ = 0) = 0.17 using resonant excitation of the quantum dot. We show that the downconversion interface is fully compatible with coherent optical control of the quantum dot electron spin through the observation of Rabi oscillations in the downconverted photon counts. These results represent a critical step towards a long-distance hybrid quantum network in which subsystems operating at different wavelengths are connected through quantum frequency conversion devices and 1.5-μm quantum channels.

© 2012 OSA

OCIS Codes
(190.4390) Nonlinear optics : Nonlinear optics, integrated optics
(270.5565) Quantum optics : Quantum communications
(230.7405) Optical devices : Wavelength conversion devices
(250.5590) Optoelectronics : Quantum-well, -wire and -dot devices

ToC Category:
Quantum Optics

History
Original Manuscript: September 27, 2012
Revised Manuscript: November 9, 2012
Manuscript Accepted: November 13, 2012
Published: November 27, 2012

Citation
Jason S. Pelc, Leo Yu, Kristiaan De Greve, Peter L. McMahon, Chandra M. Natarajan, Vahid Esfandyarpour, Sebastian Maier, Christian Schneider, Martin Kamp, Sven Höfling, Robert H. Hadfield, Alfred Forchel, Yoshihisa Yamamoto, and M. M. Fejer, "Downconversion quantum interface for a single quantum dot spin and 1550-nm single-photon channel," Opt. Express 20, 27510-27519 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-25-27510


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. H. J. Kimble, “The quantum internet,” Nature (London)453, 1023–1030 (2008). [CrossRef]
  2. S. Ritter, C. Nölleke, C. Hahn, A. Reiserer, A. Neuzner, M. Uphoff, M. Mücke, E. Figueroa, J. Bochmann, and G. Rempe, “An elementary quantum network of single atoms in optical cavities,” Nature (London)484, 195–200 (2012). [CrossRef]
  3. A. G. Radnaev, Y. O. Dudin, R. Zhao, H. H. Jen, S. D. Jenkins, A. Kuzmich, and T. A. B. Kennedy, “A quantum memory with telecom-wavelength conversion,” Nature Phys.6, 894–899 (2010). [CrossRef]
  4. P. Kumar, “Quantum frequency conversion,” Opt. Lett.15, 1476–1478 (1990). [CrossRef] [PubMed]
  5. S. Tanzilli, W. Tittel, M. Halder, O. Alibart, P. Baldi, N. Gisin, and H. Zbinden, “A photonic quantum information interface,” Nature (London)437, 116–120 (2005). [CrossRef]
  6. R. Ikuta, Y. Kusaka, T. Kitano, H. Kato, T. Yamamoto, M. Koashi, and N. Imoto, “Wide-band quantum interface for visible-to-telecommunication wavelength conversion,” Nature Commun.2, 537 (2011). [CrossRef]
  7. D. Press, T. D. Ladd, B. Zhang, and Y. Yamamoto, “Complete quantum control of a single quantum dot spin using ultrafast optical pulses,” Nature (London)456, 218–221 (2008). [CrossRef]
  8. J. Berezovsky, M. H. Mikkelsen, N. G. Stoltz, L. A. Coldren, and D. D. Awschalom, “Picosecond coherent optical manipulation of a single electron spin in a quantum dot,” Science320, 349–352 (2008). [CrossRef] [PubMed]
  9. M. T. Rakher, L. Ma, O. Slattery, X. Tang, and K. Srinivasan, “Quantum transduction of telecommunications-band single photons from a quantum dot by frequency upconversion,” Nat. Photonics4, 786–791 (2010). [CrossRef]
  10. M. T. Rakher, L. Ma, M. Davano, O. Slattery, X. Tang, and K. Srinivasan, “Simultaneous wavelength translation and amplitude modulation of single photons from a quantum dot,” Phys. Rev. Lett.107, 083602 (2011). [CrossRef] [PubMed]
  11. Z. Y. Ou, “Efficient conversion between photons and between photon and atom by stimulated emission,” Phys. Rev. A78, 023819 (2008). [CrossRef]
  12. C. Langrock, E. Diamanti, R. V. Roussev, Y. Yamamoto, M. M. Fejer, and H. Takesue, “Highly efficient single-photon detection at communication wavelengths by use of upconversion in reverse-proton-exchanged periodically poled LiNbO3 waveguides,” Opt. Lett.30, 1725–1727 (2005). [CrossRef] [PubMed]
  13. J. S. Pelc, L. Ma, C. R. Phillips, Q. Zhang, C. Langrock, O. Slattery, X. Tang, and M. M. Fejer, “Long-wavelength-pumped upconversion single-photon detector at 1550 nm: performance and noise analysis,” Opt. Express19, 21445–21456 (2011). [CrossRef] [PubMed]
  14. H. Takesue, “Single-photon frequency down-conversion experiment,” Phys. Rev. A82, 013833 (2010). [CrossRef]
  15. N. Curtz, R. Thew, C. Simon, N. Gisin, and H. Zbinden, “Coherent frequency-down-conversion interface for quantum repeaters,” Opt. Express18, 22099–22104 (2010). [CrossRef] [PubMed]
  16. J. S. Pelc, C. Langrock, Q. Zhang, and M. M. Fejer, “Influence of domain disorder on parametric noise in quasi-phase-matched quantum frequency converters,” Opt. Lett.35, 2804–2806 (2010). [CrossRef] [PubMed]
  17. S. Zaske, A. Lenhard, and C. Becher, “Efficient frequency downconversion at the single photon level from the red spectral range to the telecommunications c-band,” Opt. Express19, 12825–12836 (2011). [CrossRef] [PubMed]
  18. O. Kuzucu, F. N. C. Wong, S. Kurimura, and S. Tovstonog, “Time-resolved single-photon detection by femtosecond upconversion,” Opt. Lett.33, 2257–2259 (2008). [CrossRef] [PubMed]
  19. A. J. Shields, “Semiconductor quantum light sources,” Nat. Photonics1, 215–223 (2007). [CrossRef]
  20. D. Press, K. De Greve, P. L. McMahon, T. D. Ladd, B. Friess, C. Schneider, M. Kamp, S. Hofling, A. Forchel, and Y. Yamamoto, “Ultrafast optical spin echo in a single quantum dot,” Nat. Photonics4, 367–370 (2010). [CrossRef]
  21. C. Santori, D. Fattal, J. Vuckovic, G. S. Solomon, and Y. Yamamoto, “Indistinguishable photons from a single-photon device,” Nature (London)419, 594–597 (2002). [CrossRef]
  22. E. B. Flagg, A. Muller, S. V. Polyakov, A. Ling, A. Migdall, and G. S. Solomon, “Interference of single photons from two separate semiconductor quantum dots,” Phys. Rev. Lett.104, 137401 (2010). [CrossRef] [PubMed]
  23. R. B. Patel, A. J. Bennett, I. Farrer, C. A. Nicoll, D. A. Ritchie, and A. J. Shields, “Two-photon interference of the emission from electrically tunable remote quantum dots,” Nat. Photonics4, 632–635 (2010). [CrossRef]
  24. H. Takesue, S. W. Nam, Q. Zhang, R. H. Hadfield, T. Honjo, K. Tamaki, and Y. Yamamoto, “Quantum key distribution over a 40-dB channel loss using superconducting single-photon detectors,” Nat. Photonics1, 343–348 (2007). [CrossRef]
  25. E. Togan, Y. Chu, A. S. Trifonov, L. Jiang, J. Maze, L. Childress, M. V. G. Dutt, A. S. Sorensen, P. R. Hemmer, A. S. Zibrov, and M. D. Lukin, “Quantum entanglement between an optical photon and a solid-state spin qubit,” Nature (London)466, 730–734 (2010). [CrossRef]
  26. M. H. Chou, J. Hauden, M. A. Arbore, and M. M. Fejer, “1.5-μm-band wavelength conversion based on difference-frequency generation in LiNbO3 waveguides with integrated coupling structures,” Opt. Lett.23, 1004–1006 (1998). [CrossRef]
  27. G. Agrawal, Nonlinear Fiber Optics, Fourth Edition (Academic Press, 2006).
  28. A. Gröne and S. Kapphan, “Direct OH and OD librational absorption bands in LiNbO3,” J. of Phys. and Chem. of Solids57, 325–331 (1996). [CrossRef]
  29. M. G. Tanner, C. M. Natarajan, V. K. Pottapenjara, J. A. OConnor, R. J. Warburton, R. H. Hadfield, B. Baek, S. Nam, S. N. Dorenbos, E. B. Urea, T. Zijlstra, T. M. Klapwijk, and V. Zwiller, “Enhanced telecom wavelength single-photon detection with NbTiN superconducting nanowires on oxidized silicon,” Appl. Phys. Lett.96, 221109 (2010). [CrossRef]
  30. S. Zaske, A. Lenhard, C. A. Keßler, J. Kettler, C. Hepp, C. Arend, R. Albrecht, W.-M. Schulz, M. Jetter, P. Michler, and C. Becher, “Visible-to-telecom quantum frequency conversion of light from a single quantum emitter,” Phys. Rev. Lett.109, 147404 (2012). [CrossRef] [PubMed]
  31. D. Kielpinski, J. F. Corney, and H. M. Wiseman, “Quantum optical waveform conversion,” Phys. Rev. Lett.106, 130501 (2011). [CrossRef] [PubMed]
  32. S. Ates, I. Agha, A. Gulinatti, I. Rech, M. T. Rakher, A. Badolato, and K. Srinivasan, “Two-photon interference using background-free quantum frequency conversion of single photons emitted by an InAs quantum dot,” Phys. Rev. Lett.109, 147405 (2012). [CrossRef] [PubMed]
  33. K. De Greve, L. Yu, P. L. McMahon, J. S. Pelc, C. M. Natarajan, N. Y. Kim, E. Abe, S. Maier, C. Schneider, M. Kamp, S. Höfling, R. H. Hadfield, A. Forchel, M. M. Fejer, and Y. Yamamoto, “Quantum-dot spin-photon entanglement via frequency downconversion to telecom wavelength,” Nature (London)491, 421–425 (2012). [CrossRef]
  34. H. Takesue, “Erasing distinguishability using quantum frequency up-conversion,” Phys. Rev. Lett.101, 173901 (2008). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited