OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 25 — Dec. 3, 2012
  • pp: 27530–27541

Light extraction by directional sources within optically dense media

James R. Nagel  »View Author Affiliations


Optics Express, Vol. 20, Issue 25, pp. 27530-27541 (2012)
http://dx.doi.org/10.1364/OE.20.027530


View Full Text Article

Enhanced HTML    Acrobat PDF (1350 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Light extraction efficiency (LEE) from a light-emitting diode is commonly referenced against an isotropic radiator within a dense dielectric medium. However, this description is not necessarily accurate for photonic devices with directional source elements. We therefore derive exact solutions for the LEE of a directive radiating source next to a planar dielectric boundary, accounting for any Fresnel reflections at the interface. These results can be used to validate numerical simulations and to quantify the baseline LEE for different source models. Four variations are explored, including the isotropic radiator, parallel and perpendicular orientations of the Hertzian dipole, and Lambertian scattering. Due to index matching, Fresnel reflections are generally negligible for materials with large escape cones, but reduce LEE by 20 % or more when critical angle is below 25°.

© 2012 OSA

OCIS Codes
(230.3670) Optical devices : Light-emitting diodes
(260.2110) Physical optics : Electromagnetic optics

ToC Category:
Optical Devices

History
Original Manuscript: October 26, 2012
Revised Manuscript: November 14, 2012
Manuscript Accepted: November 14, 2012
Published: November 27, 2012

Citation
James R. Nagel, "Light extraction by directional sources within optically dense media," Opt. Express 20, 27530-27541 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-25-27530


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. I. Schnitzer, E. Yablonovitch, C. Caneau, T. J. Gmitter, and A. Scherer, “30 % external quantum efficiency from surface textured, thin-film light-emitting diodes,” Appl. Phys. Lett.63(16), 2174–2176 (1993). [CrossRef]
  2. T. Fujii, Y. Gao, R. Sharma, E. L. Hu, S. P. DenBaars, and S. Nakamura, “Increase in the extraction efficiency of GaN-based light-emitting diodes via surface roughening,” Appl. Phys. Lett.84(6), 855–857 (2004). [CrossRef]
  3. A. David, H. Benisty, and C. Weisbuch, “Optimization of light-diffracting photonic-crystals for high extraction efficiency LEDs,” J. Disp. Technol.3(2), 133–148 (2007). [CrossRef]
  4. C. Wiesmann, K. Bergenek, N. Linder, and U. T. Schwarz, “Photonic crystal LEDs - designing light extraction,” Laser & Photon. Rev.3(2), 262–286 (2009). [CrossRef]
  5. J. Vuckovic, M. Loncar, and A. Scherer, “Surface plasmon enhanced light-emitting diode,” IEEE J. Quant. Electron.36(10), 1131–1144 (2000). [CrossRef]
  6. T. Yamasaki, K. Sumioka, and T. Tsutsui, “Organic light-emitting device with an ordered monolayer of silica microspheres as a scattering medium,” Appl. Phys. Lett.76(10), 1243–1245 (2000). [CrossRef]
  7. E. F. Schubert, Light-Emitting Diodes (Cambridge University Press, 2006). [CrossRef]
  8. M. F. Schubert, S. Chhajed, J. K. Kim, and E. F. Schubert, “Polarization of light emission by 460 nm GaInN/GaN light-emitting diodes grown on (0001) oriented sapphire substrates,” Appl. Phys. Lett.91(5), 051117 (2007). [CrossRef]
  9. K. B. Nam, J. Li, M. L. Nakarmi, J. Y. Lin, and H. X. Jiang, “Unique optical properties of AlGaN alloys and related ultraviolet emitters,” Appl. Phys. Lett.84(25), 5264–5266 (2004). [CrossRef]
  10. W. Lukosz and R. E. Kunz, “Light emission by magnetic and electric dipoles close to a plane dielectric interface. I. Total radiated power,” J. Opt. Soc. Am.67(12), 1607–1615 (1977). [CrossRef]
  11. W. Lukosz and R. E. Kunz, “Light emission by magnetic and electric dipoles close to a plane dielectric interface. II. Radiation patterns of perpendicular oriented dipoles,” J. Opt. Soc. Am.67(12), 1615–1619 (1977). [CrossRef]
  12. M. Cui, P. Urbach, and D. K. G. de Boer, “Optimization of light extraction from OLEDs,” Opt. Express15(8), 4398–4409 (2007). [CrossRef] [PubMed]
  13. D. H. Staelin, A. W. Morgenthaler, and J. A. Kong, Electromagnetic Waves (Prentice Hall, 1998).
  14. J. D. Jackson, Classical Electrodynamics (Wiley, 1999).
  15. F. T. Ulaby, Fundamentals of Applied Electromagnetics (Prentice Hall, 2007).
  16. J. A. Kong, Electromagnetic Wave Theory (EMW Publishing, 2000).
  17. H. Kikuta, S. Hino, and A. Maruyama, “Estimation method for the light extraction efficiency of light-emitting elements with a rigorous grating diffraction theory,” J. Opt. Soc. Am. A23(5), 1207–1213 (2006). [CrossRef]
  18. M. G. Moharam and T. K. Gaylord, “Three-dimensional vector coupled-wave analysis of planar-grating diffraction,” J. Opt. Soc. Am.73(9), 1105–1112 (1983). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited