OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 25 — Dec. 3, 2012
  • pp: 27542–27553

Analytical study on arbitrary waveform generation by MEMS micro mirror arrays

Salih K. Kalyoncu, Yuewang Huang, Qi Song, and Ozdal Boyraz  »View Author Affiliations

Optics Express, Vol. 20, Issue 25, pp. 27542-27553 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1471 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We provide analytical modeling and the detailed procedure that is used in recently proposed arbitrary waveform generation technique by using MEMS digital micro-mirror arrays. We estimate the achievable temporal resolution, repetition rate, modulation index and the rise/fall times of the final waveform as figure of merit in the proposed systems. We show that reducing the diffraction limit via increasing the ratio of beam size to lens focal length (>0.075) and the spatial modulation down to single mirror pitch size (10.8μm), waveforms up to 18GHz repetition rates with >90% modulation index and <100ps rise times are achievable. Theoretical calculations are compared with experimental generation of 120MHz square waves and 160MHz sawtooth waves and obtained good agreement.

© 2012 OSA

OCIS Codes
(050.1970) Diffraction and gratings : Diffractive optics
(230.3990) Optical devices : Micro-optical devices
(070.6120) Fourier optics and signal processing : Spatial light modulators

ToC Category:
Optical Devices

Original Manuscript: August 23, 2012
Revised Manuscript: November 11, 2012
Manuscript Accepted: November 12, 2012
Published: November 28, 2012

Salih K. Kalyoncu, Yuewang Huang, Qi Song, and Ozdal Boyraz, "Analytical study on arbitrary waveform generation by MEMS micro mirror arrays," Opt. Express 20, 27542-27553 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. L. J. Mullen, A. J. C. Vieira, P. R. Herezfeld, and V. M. Contarino, “Application of RADAR technology to aerial LIDAR systems for enhancement of shallow underwater target detection,” IEEE Trans. Microw. Theory Tech.43(9), 2370–2377 (1995). [CrossRef]
  2. B. Jalali, P. Kelkar, and V. Saxena, “Photonic arbitrary waveform generator,” in Proc. 14th Annu. Meeting IEEE Lasers Electro-Optics Soc. 1, 253–254 (2001).
  3. S. Poinsot, H. Porte, J.-P. Goedgebuer, W. T. Rhodes, and B. Boussert, “Continuous radio-frequency tuning of an optoelectronic oscillator with dispersive feedback,” Opt. Lett.27(15), 1300–1302 (2002). [CrossRef] [PubMed]
  4. T. Yilmaz, C. M. DePriest, T. Turpin, J. H. Abeles, and P. J. Delfyett, “Toward a photonic arbitrary waveform generator using modelocked external cavity semiconductor laser,” IEEE Photon. Technol. Lett.14(11), 1608–1610 (2002). [CrossRef]
  5. H. Chi and J. Yao, “Symmetrical waveform generation based on temporal pulse shaping using amplitude-only modulator,” Electron. Lett.43(7), 415–417 (2007). [CrossRef]
  6. C. Wang and J. Yao, “Large time-bandwidth product microwave arbitrary waveform generation using a spatially discrete chirped fiber Bragg grating,” J. Lightwave Technol.28(11), 1652–1660 (2010). [CrossRef]
  7. M. Bolea, J. Mora, B. Ortega, and J. Capmany, “Optical arbitrary waveform generator using incoherent microwave photonic filtering,” IEEE Photon. Technol. Lett.23(10), 618–620 (2011). [CrossRef]
  8. J. D. McKinney, D. E. Leaird, and A. M. Weiner, “Millimeter-wave arbitrary waveform generation with a direct space-to-time pulse shaper,” Opt. Lett.27(15), 1345–1347 (2002). [CrossRef] [PubMed]
  9. A. M. Weiner, “Femtosecond optical pulse shaping and processing,” Prog. Quantum Electron.19(3), 161–237 (1995). [CrossRef]
  10. J. Chou, Y. Han, and B. Jalali, “Adaptive RF-Photonic arbitrary waveform generator,” IEEE Photon. Technol. Lett.15(4), 581–583 (2003). [CrossRef]
  11. D. L. P. Texas Instruments, “DLP 0.55XGA Chipset,” (Texas Instruments 2010). http://www.ti.com/lit/ml/dlpb003/dlpb003.pdf
  12. R. S. Nesbitt, S. L. Smith, R. A. Molnar, and S. A. Benton, “Holographic recording using a digital micromirror device,” Proc. SPIE3637, 12–20 (1999). [CrossRef]
  13. I. W. Jung, J. S. Wang, and O. Solgaard, “Optical pattern generation using a spatial light modulator for maskless lithography,” IEEE J. Sel. Top. Quantum Electron.13(2), 147–154 (2007). [CrossRef]
  14. D. Dudley, W. Duncan, and J. Slaughter, “Emerging Digital Micromirror Device (DMD) applications,” Proc. SPIE4985, 14–25 (2003). [CrossRef]
  15. S. K. Nayar, V. Branzoi, and T. E. Boult, “Programmable imaging using a digital micromirror array,” In Proc. of IEEE Conference on Computer Vision and Pattern Recognition (CVPR) I, 436–443 (2004).
  16. S. K. Kalyoncu, Y. Huang, Q. Song, and O. Boyraz, “Fast arbitrary waveform generation by using digital micro mirror arrays,” IEEE Photonics Conference, paper TuK 4, San Francisco, Sept. 2012.
  17. S. K. Kalyoncu, Y. Huang, Q. Song and O. Boyraz, “Fast arbitrary waveform generation by using digital micro mirror arrays,” IEEE Photon. Technol. Lett. (To be Appear In Photonics Technology Letters).
  18. M. L. Hsieh, “Modulation transfer function of Digital Micromirror Device,” Opt. Eng.45(3), 034001 (2006). [CrossRef]
  19. O. Boyraz, J. Kim, M. N. Islam, and B. Jalali, “10 Gb/s multiple wavelength, coherent short pulse source based on spectral carving of supercontinuum generated in fibers,” J. Lightwave Technol.18(12), 2167–2175 (2000). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited