OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 25 — Dec. 3, 2012
  • pp: 27612–27635

Kinetics of pulse-induced photoluminescence from a semiconductor quantum dot

Ivan D. Rukhlenko, Mikhail Yu. Leonov, Vadim K. Turkov, Aleksandr P. Litvin, Anvar S. Baimuratov, Alexander V. Baranov, and Anatoly V. Fedorov  »View Author Affiliations


Optics Express, Vol. 20, Issue 25, pp. 27612-27635 (2012)
http://dx.doi.org/10.1364/OE.20.027612


View Full Text Article

Enhanced HTML    Acrobat PDF (3476 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Optical methods, which allow the determination of the dominant channels of energy and phase relaxation, are the most universal techniques for the investigation of semiconductor quantum dots. In this paper, we employ the kinetic Pauli equation to develop the first generalized model of the pulse-induced photoluminescence from the lowest-energy eigenstates of a semiconductor quantum dot. Without specifying the shape of the excitation pulse and by assuming that the energy and phase relaxation in the quantum dot may be characterized by a set of phenomenological rates, we derive an expression for the observable photoluminescence cross section, valid for an arbitrary number of the quantum dot’s states decaying with the emission of secondary photons. Our treatment allows for thermal transitions occurring with both decrease and increase in energy between all the relevant eigenstates at room or higher temperature. We show that in the general case of N states coupled to each other through a bath, the photoluminescence kinetics from any of them is determined by the sum of N exponential functions, whose exponents are proportional to the respective decay rates. We illustrate the application of the developed model by considering the processes of resonant luminescence and thermalized luminescence from the quantum dot with two radiating eigenstates, and by assuming that the secondary emission is excited with either a Gaussian or exponential pulse. Analytic expressions describing the signals of secondary emission are analyzed, in order to elucidate experimental situations in which the relaxation constants may be reliably extracted from the photoluminescence spectra.

© 2012 OSA

OCIS Codes
(300.3700) Spectroscopy : Linewidth
(300.6280) Spectroscopy : Spectroscopy, fluorescence and luminescence
(300.6470) Spectroscopy : Spectroscopy, semiconductors
(160.4236) Materials : Nanomaterials

ToC Category:
Spectroscopy

History
Original Manuscript: October 11, 2012
Revised Manuscript: November 16, 2012
Manuscript Accepted: November 16, 2012
Published: November 28, 2012

Citation
Ivan D. Rukhlenko, Mikhail Yu. Leonov, Vadim K. Turkov, Aleksandr P. Litvin, Anvar S. Baimuratov, Alexander V. Baranov, and Anatoly V. Fedorov, "Kinetics of pulse-induced photoluminescence from a semiconductor quantum dot," Opt. Express 20, 27612-27635 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-25-27612


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. V. Fedorov, I. D. Rukhlenko, A. V. Baranov, and S. Yu. Kruchinin, Optical Properties of Semiconductor Quantum Dots (Nauka, St. Petersburg, 2011).
  2. T. B. Norris, K. Kim, J. Urayama, Z. K. Wu, J. Singh, and P. K. Bhattacharya, “Density and temperature dependence of carrier dynamics in self-organized InGaAs quantum dots,” J. Phys. D: Appl. Phys.38, 2077 (2005). [CrossRef]
  3. P. Borri, W. Langbein, S. Schneider, U. Woggon, R. L. Sellin, D. Ouyang, and D. Bimberg, “Ultralong dephasing time in InGaAs quantum dots,” Phys. Rev. Lett.87, 157401 (2001). [CrossRef] [PubMed]
  4. J. H. Davies, The Physics of Low-Dimensional Semiconductors: An Introduction (Cambridge University Press, Cambridge, 1998), 1st ed.
  5. S. V. Gaponenko, Optical Properties of Semiconductor Nanocrystals (Cambridge University Press, Cambridge, 1998), 1st ed. [CrossRef]
  6. U. Woggon, Optical Properties of Semiconductor Quantum Dots (Springer, Berlin, 1996), 1st ed.
  7. A. P. Alivisatos, “Semiconductor clusters, nanocrystals, and quantum dots,” Science271, 933–937 (1996). [CrossRef]
  8. S. Strauf and F. Jahnke, “Single quantum dot nanolaser,” Laser Photonics Rev.5, 607–633 (2011).
  9. F. Schulze, M. Schoth, U. Woggon, A. Knorr, and C. Weber, “Ultrafast dynamics of carrier multiplication in quantum dots,” Phys. Rev. B84, 125318 (2011). [CrossRef]
  10. C. Weisbuch and B. Vinter, Quantum Semiconductor Structures: Fundamentals and Applications (Academic Press, Boston, 1991), 1st ed.
  11. M.-R. Dachner, E. Malic, M. Richter, A. Carmele, J. Kabuss, A. Wilms, J.-E. Kim, G. Hartmann, J. Wolters, U. Bandelow, and A. Knorr, “Theory of carrier and photon dynamics in quantum dot light emitters,” Phys. Stat. Solidi (b)247, 809–828 (2010). [CrossRef]
  12. N. Koshida, ed., Device Applications of Silicon Nanocrystals and Nanostructures (Springer Science+Business Media, LLC, New York, 2009). [CrossRef]
  13. J. Ishi-Hayase, K. Akahane, N. Yamamoto, M. Sasaki, M. Kujiraoka, and K. Ema, “Long dephasing time in self-assembled InAs quantum dots at over 1.3 μm wavelength,” Appl. Phys. Lett.88, 261907 (2006). [CrossRef]
  14. M. Bayer and A. Forchel, “Temperature dependence of the exciton homogeneous linewidth in In0.60Ga0.40As/GaAs self-assembled quantum dots,” Phys. Rev. B65, 041308 (2002). [CrossRef]
  15. A. V. Fedorov and I. D. Rukhlenko, “Propagation of electric fields induced by optical phonons in semiconductor heterostructures,” Opt. Spectrosc.100, 238–244 (2006). [CrossRef]
  16. I. D. Rukhlenko and A. V. Fedorov, “Penetration of electric fields induced by surface phonon modes into the layers of a semiconductor heterostructure,” Opt. Spectrosc.101, 253–264 (2006). [CrossRef]
  17. A. V. Fedorov, A. V. Baranov, and Y. Masumoto, “Acoustic phonon problem in nanocrystal–dielectric matrix systems,” Solid State Commun.122, 139–144 (2002). [CrossRef]
  18. X.-Q. Li, H. Nakayama, and Y. Arakawa, “Phonon bottleneck in quantum dots: Role of lifetime of the confined optical phonons,” Phys. Rev. B59, 5069–5073 (1999). [CrossRef]
  19. X.-Q. Li and Y. Arakawa, “Anharmonic decay of confined optical phonons in quantum dots,” Phys. Rev. B57, 12285–12290 (1998). [CrossRef]
  20. T. Inoshita and H. Sakaki, “Density of states and phonon-induced relaxation of electrons in semiconductor quantum dots,” Phys. Rev. B56, R4355–R4358 (1997). [CrossRef]
  21. T. Inoshita and H. Sakaki, “Electron-phonon interaction and the so-called phonon bottleneck effect in semiconductor quantum dots,” Physica B: Cond. Matt.227, 373–377 (1996). [CrossRef]
  22. T. Inoshita and H. Sakaki, “Electron relaxation in a quantum dot: Significance of multiphonon processes,” Phys. Rev. B46, 7260–7263 (1992). [CrossRef]
  23. M. I. Vasilevskiy, E. V. Anda, and S. S. Makler, “Electron-phonon interaction effects in semiconductor quantum dots: A nonperturbative approach,” Phys. Rev. B70, 035318 (2004). [CrossRef]
  24. A. V. Fedorov and I. D. Rukhlenko, “Study of electronic dynamics of quantum dots using resonant photoluminescence technique,” Opt. Spectrosc.100, 716–723 (2006). [CrossRef]
  25. A. V. Fedorov, A. V. Baranov, I. D. Rukhlenko, and S. V. Gaponenko, “Enhanced intraband carrier relaxation in quantum dots due to the effect of plasmon–LO-phonon density of states in doped heterostructures,” Phys. Rev. B71, 195310 (2005).
  26. A. V. Fedorov and A. V. Baranov, “Intraband carrier relaxation in quantum dots mediated by surface plasmon-phonon excitations,” Opt. Spectrosc.97, 56–67 (2004). [CrossRef]
  27. A. V. Fedorov and A. V. Baranov, “Relaxation of charge carriers in quantum dots with the involvement of plasmon-phonon modes,” Semicond.38, 1065–1073 (2004). [CrossRef]
  28. A. V. Fedorov, A. V. Baranov, I. D. Rukhlenko, and Y. Masumoto, “New many-body mechanism of intraband carrier relaxation in quantum dots embedded in doped heterostructures,” Solid State Commun.128, 219–223 (2003). [CrossRef]
  29. A. V. Baranov, A. V. Fedorov, I. D. Rukhlenko, and Y. Masumoto, “Intraband carrier relaxation in quantum dots embedded in doped heterostructures,” Phys. Rev. B68, 205318 (2003). [CrossRef]
  30. G. A. Narvaez, G. Bester, and A. Zunger, “Carrier relaxation mechanisms in self-assembled (In,Ga)As/GaAs quantum dots: Efficient P → S Auger relaxation of electrons,” Phys. Rev. B74, 075403 (2006). [CrossRef]
  31. S. Yu. Kruchinin, A. V. Fedorov, A. V. Baranov, T. S. Perova, and K. Berwick, “Double quantum dot photoluminescence mediated by incoherent reversible energy transport,” Phys. Rev. B81, 245303 (2010). [CrossRef]
  32. S. Yu. Kruchinin, A. V. Fedorov, A. V. Baranov, T. S. Perova, and K. Berwick, “Electron-electron scattering in a double quantum dot: Effective mass approach,” J. Chem. Phys.133, 104704 (2010). [CrossRef] [PubMed]
  33. S. Yu. Kruchinin, A. V. Fedorov, A. V. Baranov, T. S. Perova, and K. Berwick, “Resonant energy transfer in quantum dots: Frequency-domain luminescent spectroscopy,” Phys. Rev. B78, 125311 (2008). [CrossRef]
  34. P. Guyot-Sionnest, B. Wehrenberg, and D. Yu, “Intraband relaxation in cdse nanocrystals and the strong influence of the surface ligands,” J. Chem. Phys.123, 074709 (2005). [CrossRef] [PubMed]
  35. D. F. Schroeter, D. J. Griffiths, and P. C. Sercel, “Defect-assisted relaxation in quantum dots at low temperature,” Phys. Rev. B54, 1486–1489 (1996). [CrossRef]
  36. P. C. Sercel, “Multiphonon-assisted tunneling through deep levels: A rapid energy-relaxation mechanism in non-ideal quantum-dot heterostructures,” Phys. Rev. B51, 14532–14541 (1995). [CrossRef]
  37. V. K. Turkov, S. Yu. Kruchinin, and A. V. Fedorov, “Intraband optical transitions in semiconductor quantum dots: Radiative electronic-excitation lifetime,” Opt. Spectrosc.110, 740–747 (2011). [CrossRef]
  38. B. Patton, W. Langbein, U. Woggon, L. Maingault, and H. Mariette, “Time- and spectrally-resolved four-wave mixing in single CdTe/ZnTe quantum dots,” Phys. Rev. B73, 235354 (2006). [CrossRef]
  39. E. G. Kavousanaki, O. Roslyak, and S. Mukamel, “Probing excitons and biexcitons in coupled quantum dots by coherent two-dimensional optical spectroscopy,” Phys. Rev. B79, 155324 (2009). [CrossRef]
  40. W. Demtröder, Laser Spectroscopy: Basic Concepts and Instrumentation (Springer, Berlin, 2002), 3rd ed.
  41. A. V. Fedorov, A. V. Baranov, and Y. Masumoto, “Coherent control of optical-phonon-assisted resonance secondary emission in semiconductor quantum dots,” Opt. Spectrosc.93, 52–60 (2002). [CrossRef]
  42. A. V. Fedorov, A. V. Baranov, and Y. Masumoto, “Coherent control of the quasi-elastic resonant secondary emission: Semiconductor quantum dots,” Opt. Spectrosc.92, 732–738 (2002). [CrossRef]
  43. A. V. Fedorov, A. V. Baranov, and Y. Masumoto, “Coherent control of thermalized luminescence in semiconductor quantum dots,” Opt. Spectrosc.93, 555–558 (2002). [CrossRef]
  44. A. V. Baranov, V. Davydov, A. V. Fedorov, H.-W. Ren, S. Sugou, and Y. Masumoto, “Coherent control of stress-induced InGaAs quantum dots by means of phonon-assisted resonant photoluminescence,” Physica Status Solidi (b)224, 461–464 (2001). [CrossRef]
  45. H. Kurtze, J. Seebeck, P. Gartner, D. R. Yakovlev, D. Reuter, A. D. Wieck, M. Bayer, and F. Jahnke, “Carrier relaxation dynamics in self-assembled semiconductor quantum dots,” Phys. Rev. B80, 235319 (2009). [CrossRef]
  46. M. C. Hoffmann, J. Hebling, H. Y. Hwang, K.-L. Yeh, and K. A. Nelson, “Impact ionization in InSb probed by terahertz pump—terahertz probe spectroscopy,” Phys. Rev. B79, 161201 (2009). [CrossRef]
  47. H.-Y. Liu, Z.-M. Meng, Q.-F. Dai, L.-J. Wu, Q. Guo, W. Hu, S.-H. Liu, S. Lan, and T. Yang, “Ultrafast carrier dynamics in undoped and p-doped InAs/GaAs quantum dots characterized by pump-probe reflection measurements,” J. Appl. Phys.103, 083121 (2008). [CrossRef]
  48. T. Berstermann, T. Auer, H. Kurtze, M. Schwab, D. R. Yakovlev, M. Bayer, J. Wiersig, C. Gies, F. Jahnke, D. Reuter, and A. D. Wieck, “Systematic study of carrier correlations in the electron-hole recombination dynamics of quantum dots,” Phys. Rev. B76, 165318 (2007). [CrossRef]
  49. S. L. Sewall, R. R. Cooney, K. E. H. Anderson, E. A. Dias, and P. Kambhampati, “State-to-state exciton dynamics in semiconductor quantum dots,” Phys. Rev. B74, 235328 (2006). [CrossRef]
  50. M. Yu. Leonov, A. V. Baranov, and A. V. Fedorov, “Transient intraband light absorption by quantum dots: Pump-probe spectroscopy,” Opt. Spectrosc.111, 798–807 (2011). [CrossRef]
  51. M. Yu. Leonov, A. V. Baranov, and A. V. Fedorov, “Transient interband light absorption by quantum dots: Non-degenerate case of pump-probe spectroscopy,” Opt. Spectrosc.110, 24–32 (2011). [CrossRef]
  52. M. Yu. Leonov, A. V. Baranov, and A. V. Fedorov, “Transient interband light absorption by quantum dots: Degenerate pump-probe spectroscopy,” Opt. Spectrosc.109, 358–365 (2010). [CrossRef]
  53. K. Rivoire, S. Buckley, Y. Song, M. L. Lee, and J. Vučković, “Photoluminescence from In0.5Ga0.5As/GaP quantum dots coupled to photonic crystal cavities,” Phys. Rev. B85, 045319 (2012). [CrossRef]
  54. X. M. Dou, B. Q. Sun, D. S. Jiang, H. Q. Ni, and Z. C. Niu, “Electron spin relaxation in a single InAs quantum dot measured by tunable nuclear spins,” Phys. Rev. B84, 033302 (2011). [CrossRef]
  55. V. M. Axt and T. Kuhn, “Femtosecond spectroscopy in semiconductors: A key to coherences, correlations and quantum kinetics,” Rep. Prog. Phys.67, 433 (2004). [CrossRef]
  56. S. A. Empedocles, D. J. Norris, and M. G. Bawendi, “Photoluminescence spectroscopy of single CdSe nanocrystallite quantum dots,” Phys. Rev. Lett.77, 3873–3876 (1996). [CrossRef] [PubMed]
  57. A. Pandey and P. Guyot-Sionnest, “Slow electron cooling in colloidal quantum dots,” Science322, 929–932 (2008). [CrossRef] [PubMed]
  58. C. Bonati, A. Cannizzo, D. Tonti, A. Tortschanoff, F. van Mourik, and M. Chergui, “Subpicosecond near-infrared fluorescence upconversion study of relaxation processes in PbSe quantum dots,” Phys. Rev. B76, 033304 (2007). [CrossRef]
  59. E. Hendry, M. Koeberg, F. Wang, H. Zhang, C. de Mello Donegá, D. Vanmaekelbergh, and M. Bonn, “Direct observation of electron-to-hole energy transfer in CdSe quantum dots,” Phys. Rev. Lett.96, 057408 (2006). [CrossRef] [PubMed]
  60. R. D. Schaller, J. M. Pietryga, S. V. Goupalov, M. A. Petruska, S. A. Ivanov, and V. I. Klimov, “Breaking the phonon bottleneck in semiconductor nanocrystals via multiphonon emission induced by intrinsic nonadiabatic interactions,” Phys. Rev. Lett.95, 196401 (2005). [CrossRef] [PubMed]
  61. H. Benisty, C. M. Sotomayor-Torrès, and C. Weisbuch, “Intrinsic mechanism for the poor luminescence properties of quantum-box systems,” Phys. Rev. B44, 10945–10948 (1991). [CrossRef]
  62. U. Bockelmann and G. Bastard, “Phonon scattering and energy relaxation in two-, one-, and zero-dimensional electron gases,” Phys. Rev. B42, 8947–8951 (1990). [CrossRef]
  63. K. Blum, Density Matrix Theory and Applications (Springer, Berlin, 2012), 3rd ed. [CrossRef]
  64. A. Al Salman, A. Tortschanoff, M. B. Mohamed, D. Tonti, F. van Mourik, and M. Chergui, “Temperature effects on the spectral properties of colloidal CdSe nanodots, nanorods, and tetrapods,” Appl. Phys. Lett.90, 093104 (2007). [CrossRef]
  65. P. Borri, W. Langbein, U. Woggon, V. Stavarache, D. Reuter, and A. D. Wieck, “Exciton dephasing via phonon interactions in InAs quantum dots: Dependence on quantum confinement,” Phys. Rev. B71, 115328 (2005). [CrossRef]
  66. P. Borri, W. Langbein, S. Schneider, U. Woggon, R. L. Sellin, D. Ouyang, and D. Bimberg, “Relaxation and dephasing of multiexcitons in semiconductor quantum dots,” Phys. Rev. Lett.89, 187401 (2002). [CrossRef] [PubMed]
  67. I. D. Rukhlenko, A. V. Fedorov, A. S. Baymuratov, and M. Premaratne, “Theory of quasi-elastic secondary emission from a quantum dot in the regime of vibrational resonance,” Opt. Express19, 15459–15482 (2011). [CrossRef] [PubMed]
  68. J. S. Melinger and A. C. Albrecht, “Theory of time and frequency resolved resonance secondary radiation from a three-level system,” J. Chem. Phys.84, 1247–1258 (1986). [CrossRef]
  69. G. Nienhuis, “Time and frequency dependence of nearly resonant light scattered from collisionally perturbed atoms,” Physica C96, 391–409 (1979). [CrossRef]
  70. J. H. Eberly and K. Wódkiewicz, “The time-dependent physical spectrum of light,” J. Opt. Soc. Am.67, 1252–1261 (1977). [CrossRef]
  71. E. V. Ushakova, A. P. Litvin, P. S. Parfenov, A. V. Fedorov, M. Artemyev, A. V. Prudnikau, I. D. Rukhlenko, and A. V. Baranov, “Anomalous size-dependent decay of low-energy luminescence from PbS quantum dots in colloidal solution,” ACS Nano6, 8913–8921 (2012). [CrossRef] [PubMed]
  72. J. Gomis-Bresco, G. Muñoz-Matutano, J. Martínez-Pastor, B. Alén, L. Seravalli, P. Frigeri, G. Trevisi, and S. Franchi, “Random population model to explain the recombination dynamics in single InAs/GaAs quantum dots under selective optical pumping,” New J. Phys.13, 023022 (2011). [CrossRef]
  73. M. Abbarchi, C. Mastrandrea, T. Kuroda, T. Mano, A. Vinattieri, K. Sakoda, and M. Gurioli, “Poissonian statistics of excitonic complexes in quantum dots,” J. Appl. Phys.106, 053504 (2009). [CrossRef]
  74. M. Grundmann and D. Bimberg, “Theory of random population for quantum dots,” Phys. Rev. B55, 9740–9745 (1997). [CrossRef]
  75. I. S. Gradshteyn and I. M. Ryzhik, Tables of Integrals, Series, and Products (Academic Press, San Diego, CA, 1994), 5th ed.
  76. G. A. Korn and T. M. Korn, Mathematical Handbook for Scientists and Engineers (Dover, New York, 2000), 2nd ed.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited