OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 25 — Dec. 3, 2012
  • pp: 27636–27649

Efficient photo-thermal activation of gold nanoparticle-doped polymer plasmonic switches

J.-C. Weeber, K. Hassan, L. Saviot, A. Dereux, C. Boissière, O. Durupthy, C. Chaneac, E. Burov, and A. Pastouret  »View Author Affiliations

Optics Express, Vol. 20, Issue 25, pp. 27636-27649 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (8267 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report on the photo-thermal activation of dielectric loaded plasmonic switches comprised of gold nanoparticle-doped polymer deposited onto a gold film. The plasmonic switches rely on a multi-mode interferometer design and are fabricated by electron beam lithography applied to a positive resin doped with gold nanoparticles at a volume ratio of 0.52%. A cross-bar switching is obtained at telecom wavelengths by pumping the devices with a visible beam having a frequency within the localized surface plasmon resonance band of the embedded nanoparticles. By comparing the switching performances of doped and undoped devices, we show that for the modest doping level we consider, the power needed to activate the doped switches is reduced by a factor 2.5 compared to undoped devices. The minimization of activation power is attributed to enhanced light-heat conversion and optimized spatial heat generation for doped devices and not to a change of the thermo-optic coefficient of the doped polymer.

© 2012 OSA

OCIS Codes
(160.3900) Materials : Metals
(160.6840) Materials : Thermo-optical materials
(240.6680) Optics at surfaces : Surface plasmons
(130.4815) Integrated optics : Optical switching devices
(130.5460) Integrated optics : Polymer waveguides

ToC Category:
Integrated Optics

Original Manuscript: October 18, 2012
Revised Manuscript: November 14, 2012
Manuscript Accepted: November 14, 2012
Published: November 28, 2012

J.-C. Weeber, K. Hassan, L. Saviot, A. Dereux, C. Boissière, O. Durupthy, C. Chaneac, E. Burov, and A. Pastouret, "Efficient photo-thermal activation of gold nanoparticle-doped polymer plasmonic switches," Opt. Express 20, 27636-27649 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. B. Steinberger, A. Hohenau, H. Ditlbacher, A. L. Stepanov, A. Drezet, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “Dielectric stripes on gold as surface plasmon waveguides,” Appl. Phys. Lett.88, 094 104 (2006). [CrossRef]
  2. T. Holmgaard and S. Bozhevolnyi, “Theoretical analysis of dielectric-loaded surface plasmon waveguides,” Phys. Rev. B75, 245405 (2007). [CrossRef]
  3. A. V. Krasavin and A. V. Zayats, “Passive photonic elements based on dielectric-loaded surface plasmon waveguides,” Appl. Phys. Lett.90, 211101 (2007). [CrossRef]
  4. S. Massenot, J. Grandidier, A. Bouhelier, G. Colas des Francs, L. Markey, J.-C. Weeber, A. Dereux, J. Renger, M. U. Gonzalez, and R. Quidant, “Polymer-metal waveguides characterization by Fourier plane leakage radiation microscopy,” Appl. Phys. Lett.91, 243102 (2007). [CrossRef]
  5. T. Holmgaard, S. Bozhevolnyi, L. Markey, A. Dereux, A. Krasavin, P. Bolger, and A. Zayats, “Efficient excitation of dielectric-loaded surface plasmon-polariton waveguide modes at telecommunication wavelengths,” Phys. Rev. B78, 165431 (2008). [CrossRef]
  6. J. Grandidier, G. Colas des Francs, L. Markey, A. Bouhelier, S. Massenot, J.-C. Weeber, and A. Dereux, “Dielectric loaded surface plasmon polariton waveguides on a finite width metal strip,” Appl. Phys. Lett.96, 063 105 (2010). [CrossRef]
  7. R. M. Briggs, J. Grandidier, S. P. Burgos, E. Feigenbaum, and H. A. Atwater, “Efficient Coupling between Dielectric-Loaded Plasmonic and Silicon Photonic Waveguides.” Nano Lett.10, 4861–4867 (2010). [CrossRef]
  8. S. S. Papaioannou, K. Vyrsokinos, O. Tsilipakos, A. Pitilakis, K. Hassan, J.-C. Weeber, L. Markey, A. Dereux, S. I. Bozhevolnyi, A. Miliou, E. E. Kriesis, and N. Pleros, “A 320 Gb/s-Throughput Capable 2 × 2 Silicon-Plasmonic Router Architecture for Optical Interconnects,” J. Lightwave Technol.29, 3185–3195 (2011). [CrossRef]
  9. D. Kalavrouziotis, G. Giannoulis, D. Apostolopoulos, S. Papaioannou, A. Kumar, S. Bozhevolnyi, L. Markey, K. Hassan, J.-C. Weeber, A. Dereux, M. Baus, M. Karl, T. Tolga, O. Tsilipakos, A. Pitilakis, E. Kriesis, H. Avramopoulos, K. Vyrsokinos, and N. Pleros, “10 Gb/s Transmission and Thermo-Optic Resonance Tuning in Silicon-Plasmonic Waveguide Platform,” in Proceedings 37th European Conference on Optical Communication (ECOC2011), 6066097, Geneva, Switzerland, 18–22 September 2011.
  10. J. Gosciniak, S. I. Bozhevolnyi, T. B. Andersen, V. S. Volkov, J. Kjelstrup-Hansen, L. Markey, and A. Dereux, “Thermo-optic control of dielectric loaded plasmonic waveguide components,” Opt. Express18, 1207–1216 (2010). [CrossRef] [PubMed]
  11. O. Tsilipakos, E. E. Kriesis, and S. I. Bozhevolnyi, “Thermo-optic microring resonator switching elements made of dielectric-loaded plasmonic waveguides,” J. Appl. Phys.109, 073 111 (2011). [CrossRef]
  12. K. Hassan, J.-C. Weeber, L. Markey, and A. Dereux, “Thermo-optical control of dielectric loaded plasmonic racetrack resonators,” J. Appl. Phys.110, 023 106 (2011). [CrossRef]
  13. G. Giannoulis, D. Kalavrouziotis, D. Apostolopoulos, S. Papaioannou, A. Kumar, S. Bozhevolnyi, L. Markey, K. Hassan, J.-C. Weeber, A. Dereux, M. Baus, M. Karl, T. Tekin, O. Tsilipakos, A. K. Pitilakis, E. E. Kriesis, K. Vyrsokinos, H. Avramopoulos, and N. Pleros, “Data transmission and thermo-optic tuning performance of dielectric-loaded plasmonic structures hetero-integrated on a silicon chip,” IEEE Photon. Technol. Lett.24, 374–376 (2012). [CrossRef]
  14. D. Kalavrouziotis, S. Papaioannou, G. Giannoulis, D. Apostolopoulos, K. Hassan, L. Markey, J.-C. Weeber, A. Dereux, A. Kumar, S. I. Bozhevolnyi, M. Baus, M. Karl, T. Tekin, O. Tsilipakos, A. Pitilakis, E. E. Kriesis, H. Avramopoulos, K. Vyrsokinos, and N. Pleros, “0.48Tb/s (12x40Gb/s) WDM transmission and high-quality thermo-optic switching in dielectric loaded plasmonics,” Opt. Express20, 7655–7662 (2012). [CrossRef] [PubMed]
  15. D. Perron, M. Wu, C. Horvath, D. Bachman, and V. Van, “All-plasmonic switching based on thermal nonlinearity in a polymer plasmonic microring resonator,” Opt. Lett.36, 2731–2733 (2011). [CrossRef] [PubMed]
  16. H. H. Richardson, Z. N. Hickman, A. O. Govorov, A. C. Thomas, W. Zhang, and M. E. Kordesch “Thermooptical properties of gold nanoparticles embedded in ice: characterization of heat generation and melting,” Nano Lett.6, 783–788 (2006). [CrossRef] [PubMed]
  17. A. O. Govorov and H. H. Richardson, “Generating heat with metal nanoparticles,” Nano today2, 30–38 (2007). [CrossRef]
  18. H. H. Richardson, M. T. Carlson, P. J. Tandler, P. Hernandez, and A. O. Govorov, “Experimental and theoretical studies of light-to-heat conversion and collective heating effects in metal nanoparticle solutions,” Nano Lett.9, 1139–1146 (2009). [CrossRef] [PubMed]
  19. E. Boisselier and D. Astruc, “Gold nanoparticles in nanomedicine; preparations, imaging, diagnostics, therapies and toxicity,” Chemical Soc. Rev.38, 1759–1782 (2009). [CrossRef]
  20. A. S. Urban, M. Fedoruk, M. R. Horton, J. O. Rädler, F. D. Stefani, and J. Feldmann, “Controlled nanometric phase transitions of phospholipid membranes by plasmonic heating of single gold nanoparticles,”, Nano Lett.9, 2903–2908 (2009). [CrossRef] [PubMed]
  21. S. Maity, L. N. Downen, J. R. Bochinski, and L. I. Clarke, “Embedded metal nanoparticles as localized heat sources: An alternative processing approach for complex polymeric materials,” Polymer52, 1674–1685 (2011). [CrossRef]
  22. D. Hühn, A. Govorov, P. Rivera Gil, and W. J. Parak, “Photostimulated Au nanoheater in polymer and biological media: characterization of mechanical destruction and boiling,” Adv. Funct. Mater.22, 294–303 (2012). [CrossRef]
  23. C. Fang, S. Lei, Y. Zhao, J. Wang, and H. Wu, “A Gold Nanocrystal/Poly(dimethylsiloxane) composite for plasmonic heating on microfluidic chips,” Adv. Mater.24, 94–98 (2012). [CrossRef]
  24. G. Baffou, C. Girard, and R. Quidant, “Mapping heat origin in plasmonic structures,” Phys. Rev. Lett.104, 136 805 (2010). [CrossRef]
  25. A. Sanchot, G. Baffou, R. Marty, A. Arbouet, R. Quidant, C. Girard, and E. Dujardin, “Plasmonic nanoparticle network for light and heat concentration,” ACS Nano4, 3434–3440 (2012). [CrossRef]
  26. A. Pitilakis and E. E. Kriesis, “Longitudinal 2x2 Switching Configurations Based on Thermo-Optically Addressed Dielectric-Loaded Plasmonic Waveguides,” J. Lightwave Technol.29, 2636–2646 (2011). [CrossRef]
  27. K. Hassan, J.-C. Weeber, L. Markey, A. Dereux, O. Pitilakis, and E. E. Kriesis, “Thermo-optic plasmo-photonic mode interference switches based on dielectric loaded waveguides,” Appl. Phys. Lett.99, 241 110 (2011). [CrossRef]
  28. M. G. Nielsen, J.-C. Weeber, K. Hassan, J. Fatome, C. Finot, S. Kaya, L. Markey, O. Albrektsen, S. I. Bozhevolnyi, G. Millot, and A. Dereux, “Grating couplers for fiber-to-fiber characterizations of stand-alone dielectric loaded surface plasmon waveguide components,” J. Lightwave Technol.30, 3118–3125 (2012). [CrossRef]
  29. M. A. Garcia, J. Llopis, and S. Paje, “A simple model for evaluating the optical absorption spectrum from small Au-colloids in sol-gel films,” Chem. Phys. Lett.315, 313–320 (1999). [CrossRef]
  30. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (John Wiley and sons, Inc., New York, 1983), page 136.
  31. E. D. Palik, Handbook of Optical Constants of Solids (Academic Press Inc., London, 1985).
  32. M. Rashidi-Huyeh and B. Palpant, “Counterintuitive thermo-optical response of metal-dielectric nanocomposite materials as a result of local electromagnetic enhancement,” Phys. Rev. B74, 075 405 (2006). [CrossRef]
  33. M. Nevière and E. Popov, Light Propagation in Periodic Media (Marcel Dekker, Inc. New-York-Basel, 2003).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited