OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 25 — Dec. 3, 2012
  • pp: 27697–27707

Tuning of split-ladder cavity by its intrinsic nano-deformation

Feng Tian, Guangya Zhou, Fook Siong Chau, Jie Deng, Yu Du, Xiaosong Tang, Ramam Akkipeddi, and Yee Chong Loke  »View Author Affiliations


Optics Express, Vol. 20, Issue 25, pp. 27697-27707 (2012)
http://dx.doi.org/10.1364/OE.20.027697


View Full Text Article

Enhanced HTML    Acrobat PDF (2060 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A wide-range split-ladder photonic crystal cavity which is tuned by changing its intrinsic gap width is designed and experimentally verified. Different from the coupled cavities that feature resonance splitting into symmetric and anti-symmetric modes, the single split-ladder cavity has only the symmetric modes of fundamental resonance and second-order resonance in its band gap. Finite-difference time-domain simulations demonstrate that bipolar resonance tuning (red shift and blue shift respectively) can be achieved by shrinking and expanding the cavity’s gap, and that there is a linear relationship between the resonance shifts and changes in gap width. Simulations also show that the split-ladder cavity can possess a high Q-factor when the total number of air holes in the cavity is increased. Experimentally, comb drive actuator is used to control the extent of the cavity’s gap and the variation of its displacements with applied voltage is calibrated with a scanning electron microscope. The measured wavelength of the second-order resonance shifts linearly towards blue with increase in gap width. The maximum blue shift is 17 nm, corresponding to a cavity gap increase of 26 nm with no obvious degradation of Q-factor.

© 2012 OSA

OCIS Codes
(140.3948) Lasers and laser optics : Microcavity devices
(350.4238) Other areas of optics : Nanophotonics and photonic crystals
(220.4241) Optical design and fabrication : Nanostructure fabrication
(230.4685) Optical devices : Optical microelectromechanical devices

ToC Category:
Photonic Crystals

History
Original Manuscript: August 17, 2012
Revised Manuscript: October 15, 2012
Manuscript Accepted: October 17, 2012
Published: November 29, 2012

Citation
Feng Tian, Guangya Zhou, Fook Siong Chau, Jie Deng, Yu Du, Xiaosong Tang, Ramam Akkipeddi, and Yee Chong Loke, "Tuning of split-ladder cavity by its intrinsic nano-deformation," Opt. Express 20, 27697-27707 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-25-27697


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. F. Yanik, S. Fan, and M. Soljacic, “High-contrast all-optical bistable switching in photonic crystal microcavities,” Appl. Phys. Lett.83(14), 2739 (2003). [CrossRef]
  2. T. Tanabe, M. Notomi, S. Mitsugi, A. Shinya, and E. Kuramochi, “Fast bistable all-optical switch and memory on a silicon photonic crystal on-chip,” Opt. Lett.30(19), 2575–2577 (2005). [CrossRef] [PubMed]
  3. K. Nozaki, T. Tanabe, A. Shinya, S. Matsuo, T. Sato, H. Taniyama, and M. Notomi, “Sub-femtojoule all-optical switching using a photonic-crystal nanocavity,” Nat. Photonics4(7), 477–483 (2010). [CrossRef]
  4. M. Qiu and B. Jaskorzynska, “Design of a channel drop filter in a two-dimensional triangular photonic crystal,” Appl. Phys. Lett.83(6), 1074 (2003). [CrossRef]
  5. Z. Qiang, W. Zhou, and R. A. Soref, “Optical add-drop filters based on photonic crystal ring resonators,” Opt. Express15(4), 1823–1831 (2007). [CrossRef] [PubMed]
  6. P. B. Deotare, I. Bulu, I. W. Frank, Q. Quan, Y. Zhang, R. Ilic, and M. Loncar, “All optical reconfiguration of optomechaincal filters,” Nat. Commun.3, 846 (2012).
  7. J. H. Wülbern, A. Petrov, and M. Eich, “Electro-optical modulator in a polymer-infiltrated silicon slotted photonic crystal waveguide heterostructure resonator,” Opt. Express17(1), 304–313 (2009). [CrossRef] [PubMed]
  8. T. Tanabe, K. Nishiguchi, E. Kuramochi, and M. Notomi, “Low power and fast electro-optic silicon modulator with lateral p-i-n embedded photonic crystal nanocavity,” Opt. Express17(25), 22505–22513 (2009). [CrossRef] [PubMed]
  9. O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-gap defect mode laser,” Science284(5421), 1819–1821 (1999). [CrossRef] [PubMed]
  10. M. Lončar, A. Scherer, and Y. Qiu, “Photonic crystal laser sources for chemical diction,” Appl. Phys. Lett.82(26), 4648 (2003). [CrossRef]
  11. K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu, and A. Imamoğlu, “Quantum nature of a strongly coupled single quantum dot-cavity system,” Nature445(7130), 896–899 (2007). [CrossRef] [PubMed]
  12. M. Toishi, D. Englund, A. Faraon, and J. Vucković, “High-brightness single photon source from a quantum dot in a directional-emission nanocavity,” Opt. Express17(17), 14618–14626 (2009). [CrossRef] [PubMed]
  13. P. Barclay, K. Srinivasan, and O. Painter, “Nonlinear response of silicon photonic crystal microresonators excited via an integrated waveguide and fiber taper,” Opt. Express13(3), 801–820 (2005). [CrossRef] [PubMed]
  14. T. Uesugi, B. S. Song, T. Asano, and S. Noda, “Investigation of optical nonlinearities in an ultra-high-Q Si nanocavity in a two-dimensional photonic crystal slab,” Opt. Express14(1), 377–386 (2006). [CrossRef] [PubMed]
  15. S. Mandal and D. Erickson, “Nanoscale optofluidic sensor arrays,” Opt. Express16(3), 1623–1631 (2008). [CrossRef] [PubMed]
  16. T. Sünner, T. Stichel, S. H. Kwon, T. W. Schlereth, S. Hofling, M. Kamp, and A. Forchel, “Photonic crystal cavity based gas sensor,” Appl. Phys. Lett.92(26), 261112 (2008). [CrossRef]
  17. F. Intonti, S. Vignolini, F. Riboli, M. Zani, D. S. Wiersma, L. Balet, L. H. Li, M. Francardi, A. Gerardino, A. Fiore, and M. Gurioli, “Tuning of photonic crystal cavities by controlled removal of locally infiltrated water,” Appl. Phys. Lett.95(17), 173112 (2009). [CrossRef]
  18. S. W. Leonard, J. P. Mondia, H. M. van Driel, O. Toader, S. John, K. Busch, A. Birner, U. Gösele, and V. Lehmann, “Tunable two-dimenisional photonic crystals using liquid crystal infiltration,” Phys. Rev. B61(4), R2389–R2392 (2000). [CrossRef]
  19. Z. Wang and S. Fan, “Optical circulators in two-dimensional magneto-optical photonic crystals,” Opt. Lett.30(15), 1989–1991 (2005). [CrossRef] [PubMed]
  20. M. Brunstein, R. Braive, R. Hostein, A. Beveratos, I. Rober-Philip, I. Sagnes, T. J. Karle, A. M. Yacomotti, J. A. Levenson, V. Moreau, G. Tessier, and Y. De Wilde, “Thermo-optical dynamics in an optically pumped Photonic Crystal nano-cavity,” Opt. Express17(19), 17118–17129 (2009). [CrossRef] [PubMed]
  21. J. H. Wülbern, A. Petrov, and M. Eich, “Electro-optical modulator in a polymerinfiltrated silicon slotted photonic crystal waveguide heterostructure resonator,” Opt. Express17(1), 304–313 (2009). [CrossRef] [PubMed]
  22. T. Tanabe, K. Nishiguchi, E. Kuramochi, and M. Notomi, “Low power and fast electro-optic silicon modulator with lateral p-i-n embedded photonic crystal nanocavity,” Opt. Express17(25), 22505–22513 (2009). [CrossRef] [PubMed]
  23. I. Märki, M. Salt, and H. P. Herzig, “Tuning the resonance of a photonic crystal microcavity with an AFM probe,” Opt. Express14(7), 2969–2978 (2006). [CrossRef] [PubMed]
  24. W. C. L. Hopman, K. O. van der Werf, A. J. F. Hollink, W. Bogaerts, V. Subramaniam, and R. M. de Ridder, “Nano-mechanical tuning and imaging of a photonic crystal micro-cavity resonance,” Opt. Express14(19), 8745–8752 (2006). [CrossRef] [PubMed]
  25. A. F. Koenderink, M. Kafesaki, B. C. Buchler, and V. Sandoghdar, “Controlling the resonance of a photonic crystal microcavity by a near-field probe,” Phys. Rev. Lett.95(15), 153904 (2005). [CrossRef] [PubMed]
  26. K. Umemori, Y. Kanamori, and K. Hane, “Photonic crystal waveguide switch with a microelectromechanical actuator,” Appl. Phys. Lett.89(2), 021102 (2006). [CrossRef]
  27. Y. Kanamori, T. Kitani, and K. Hane, “Control of guided resonance in a photonic crystal slab using microelectromechanical actuators,” Appl. Phys. Lett.90(3), 031911 (2007). [CrossRef]
  28. K. Takahashi, Y. Kanamori, Y. Kokubun, and K. Hane, “A wavelength-selective add-drop switch using silicon microring resonator with a submicron-comb electrostatic actuator,” Opt. Express16(19), 14421–14428 (2008). [CrossRef] [PubMed]
  29. L. Midolo, P. J. van Veldhoven, M. A. Dundar, R. Notzel, and A. Fiore, “Electromechanical wavelength tuning of double-membrane photonic crystal cavites,” Appl. Phys. Lett.98(21), 211120 (2011). [CrossRef]
  30. X. Chew, G. Zhou, H. Yu, F. S. Chau, J. Deng, Y. C. Loke, and X. Tang, “An in-plane nano-mechanics approach to achieve reversible resonance control of photonic crystal nanocavities,” Opt. Express18(21), 22232–22244 (2010). [CrossRef] [PubMed]
  31. X. Chew, G. Zhou, F. S. Chau, and J. Deng, “Enhanced resonance tuning of photonic crystal nanocavities by integration of optimized near-field multitip nanoprobes,” J. Nanophotonics5(1), 059503 (2011). [CrossRef]
  32. X. Chew, G. Zhou, F. S. Chau, J. Deng, X. Tang, and Y. C. Loke, “Dynamic tuning of an optical resonator through MEMS-driven coupled photonic crystal nanocavities,” Opt. Lett.35(15), 2517–2519 (2010). [CrossRef] [PubMed]
  33. X. Chew, G. Zhou, F. S. Chau, and J. Deng, “Nanomechanically tunable photonic crystal resonator utilizing triple-beam coupled nanocavities,” IEEE Photon. Technol. Lett.23(18), 1310–1312 (2011). [CrossRef]
  34. A. H. Safavi-Naeini, T. P. M. Alegre, M. Winger, and O. Painter, “Optomechanics in an ultrahigh-Q two-dimensional photonic crystal cavity,” Appl. Phys. Lett.97(18), 181106 (2010). [CrossRef]
  35. M. Winger, T. D. Blasius, T. P. Mayer Alegre, A. H. Safavi-Naeini, S. Meenehan, J. Cohen, S. Stobbe, and O. Painter, “A chip-scale integrated cavity-electro-optomechanics platform,” Opt. Express19(25), 24905–24921 (2011). [CrossRef] [PubMed]
  36. P. R. Villeneuve, J. S. Foresi, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, H. I. Smith, and E. P. Ippen, “Photonic-bandgap microcavities in optical waveguides,” Nature390(6656), 143–145 (1997). [CrossRef]
  37. M. Notomi, E. Kuramochi, and H. Taniyama, “Ultrahigh-Q nanocavity with 1D photonic gap,” Opt. Express16(15), 11095–11102 (2008). [CrossRef] [PubMed]
  38. P. B. Deotare, M. W. McCutcheon, I. W. Frank, M. Khan, and M. Loncar, “High quality factor photonic crystal nanobeam cavities,” Appl. Phys. Lett.94(12), 121106 (2009). [CrossRef]
  39. E. Kuramochi, H. Taniyama, T. Tanabe, K. Kawasaki, Y. G. Roh, and M. Notomi, “Ultrahigh-Q one-dimensional photonic crystal nanocavities with modulated mode-gap barriers on SiO2 claddings and on air claddings,” Opt. Express18(15), 15859–15869 (2010). [CrossRef] [PubMed]
  40. J. Chan, M. Eichenfield, R. Camacho, and O. Painter, “Optical and mechanical design of a “zipper” photonic crystal optomechanical cavity,” Opt. Express17(5), 3802–3817 (2009). [CrossRef] [PubMed]
  41. Q. Quan, P. B. Deotare, and M. Loncar, “Photonic crystal nanobeam cavity strongly coupled to the feeding waveguide,” Appl. Phys. Lett.96(20), 203102 (2010). [CrossRef]
  42. Q. Quan and M. Loncar, “Deterministic design of wavelength scale, ultra-high Q photonic crystal nanobeam cavities,” Opt. Express19(19), 18529–18542 (2011). [CrossRef] [PubMed]
  43. G. Liang, C. Lee, and A. J. Danner, “Design of narrow band photonic filter with compact MEMS for tunable resonant wavelength ranging 100 nm,” AIP Advances1(4), 042171 (2011). [CrossRef]
  44. J. D. Ryckman and S. M. Weiss, “Low mode volume slotted photonic crystal single nanobeam cavity,” Appl. Phys. Lett.101(7), 071104 (2012). [CrossRef]
  45. R. Legtenberg, A. W. Groeneveld, and M. Elwenspoek, “Comb-drive actuators for large displacement,” J. Micromech. Microeng.6(3), 320–329 (1996). [CrossRef]
  46. A. Di Falco, M. Massari, M. G. Scullion, S. A. Schulz, F. Romanato, and T. F. Krauss, “Propagation losses of slotted photonic crystal waveguides,” IEEE Photonics J.4(5), 1536–1541 (2012). [CrossRef]
  47. M. Eichenfield, R. Camacho, J. Chan, K. J. Vahala, and O. Painter, “A picogram- and nanometre-scale photonic-crystal optomechanical cavity,” Nature459(7246), 550–555 (2009). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited