OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 25 — Dec. 3, 2012
  • pp: 27725–27739

Pitch-dependent resonances and near-field coupling in infrared nanoantenna arrays

B. S. Simpkins, J. P. Long, O. J. Glembocki, J. Guo, J. D. Caldwell, and J. C. Owrutsky  »View Author Affiliations


Optics Express, Vol. 20, Issue 25, pp. 27725-27739 (2012)
http://dx.doi.org/10.1364/OE.20.027725


View Full Text Article

Enhanced HTML    Acrobat PDF (4730 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We investigate coupling in arrays of nanoparticles resonating as half-wave antennas on both silicon and sapphire, and find a universal behavior when scaled by antenna length and substrate index. Three distinct coupling regimes are identified and characterized by rigorous finite-difference time domain simulations. As interparticle pitch is reduced below the oft-described radiative to evanescent transition, resonances blue shift and narrow and exhibit an asymmetric band consistent with a Fano lineshape. Upon further pitch reduction, a transition to a third regime, termed here as near-field coupling, is observed in which the resonance shifts red, becomes more symmetric, and broadens dramatically. This latter regime occurs when the extension of the resonant mode beyond the physical antenna end overlaps that of its neighbor. Simulations identify a clear rearrangement of field intensity accompanying this regime, illustrating that longitudinal modal fields localize in the air gap rather than in the higher index substrate at a pitch consistent with the experimentally observed transition.

© 2012 OSA

OCIS Codes
(240.6680) Optics at surfaces : Surface plasmons
(300.6360) Spectroscopy : Spectroscopy, laser
(240.3695) Optics at surfaces : Linear and nonlinear light scattering from surfaces
(160.4236) Materials : Nanomaterials
(050.6624) Diffraction and gratings : Subwavelength structures

ToC Category:
Optics at Surfaces

History
Original Manuscript: August 22, 2012
Revised Manuscript: November 2, 2012
Manuscript Accepted: November 11, 2012
Published: November 29, 2012

Citation
B. S. Simpkins, J. P. Long, O. J. Glembocki, J. Guo, J. D. Caldwell, and J. C. Owrutsky, "Pitch-dependent resonances and near-field coupling in infrared nanoantenna arrays," Opt. Express 20, 27725-27739 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-25-27725


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. Moskovits, “Surface-enhanced spectroscopy,” Rev. Mod. Phys.57(3), 783–826 (1985). [CrossRef]
  2. T. R. Jensen, G. C. Schatz, and R. P. Van Duyne, “Nanosphere lithography: surface plasmon resonance spectrum of a periodic array of silver nanoparticles by ultraviolet-visible extinction spectroscopy and electrodynamic modeling,” J. Phys. Chem. B103(13), 2394–2401 (1999). [CrossRef]
  3. L. Brus, “Noble metal nanocrystals: plasmon electron transfer photochemistry and single-molecule Raman spectroscopy,” Acc. Chem. Res.41(12), 1742–1749 (2008). [CrossRef] [PubMed]
  4. P. V. Kamat, “Photophysical, photochemical and photocatalytic aspects of metal nanoparticles,” J. Phys. Chem. B106(32), 7729–7744 (2002). [CrossRef]
  5. A. Henglein, “Physicochemical properties of small metal particles in solution – “microelectrode” reactions, chemisorption, composite metal particles, and the atom-to-metal transition,” J. Phys. Chem.97(21), 5457–5471 (1993). [CrossRef]
  6. J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater.7(6), 442–453 (2008). [CrossRef] [PubMed]
  7. S. A. Maier and H. A. Atwater, “Plasmonics: Localization and guiding of electromagnetic energy in metal/dielectric structures,” J. Appl. Phys.98(1), 011101 (2005). [CrossRef]
  8. H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater.9(3), 205–213 (2010). [CrossRef] [PubMed]
  9. D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics4(2), 83–91 (2010). [CrossRef]
  10. L. B. Sagle, L. K. Ruvuna, J. A. Ruemmele, and R. P. Van Duyne, “Advances in localized surface plasmon resonance spectroscopy biosensing,” Nanomedicine (Lond)6(8), 1447–1462 (2011). [CrossRef] [PubMed]
  11. H. Hövel, S. Fritz, A. Hilger, U. Kreibig, and M. Vollmer, “Width of cluster plasmon resonances - Bulk dielectric functions and chemical interface damping,” Phys. Rev. B Condens. Matter48(24), 18178–18188 (1993). [CrossRef] [PubMed]
  12. M. Meier, A. Wokaun, and P. F. Liao, “Enhanced fields on rough surfaces - dipolar interactions among particles of sizes exceeding the Rayleigh limit,” J. Opt. Soc. Am. B2(6), 931–949 (1985). [CrossRef]
  13. M. L. Brongersma, J. W. Hartman, and H. A. Atwater, “Electromagnetic energy transfer and switching in nanoparticle chain arrays below the diffraction limit,” Phys. Rev. B62(24), R16356–R16359 (2000). [CrossRef]
  14. C. L. Haynes, A. D. McFarland, L. Zhao, R. P. Van Duyne, G. C. Schatz, L. Gunnarsson, J. Prikulis, B. Kasemo, and M. Käll, “Nanoparticle optics: The importance of radiative dipole coupling in two-dimensional nanoparticle arrays,” J. Phys. Chem. B107(30), 7337–7342 (2003). [CrossRef]
  15. R. Adato, A. A. Yanik, J. J. Amsden, D. L. Kaplan, F. G. Omenetto, M. K. Hong, S. Erramilli, and H. Altug, “Ultra-sensitive vibrational spectroscopy of protein monolayers with plasmonic nanoantenna arrays,” Proc. Natl. Acad. Sci. U.S.A.106(46), 19227–19232 (2009). [CrossRef] [PubMed]
  16. J. D. Caldwell, O. J. Glembocki, F. J. Bezares, M. I. Kariniemi, J. T. Niinistö, T. T. Hatanpää, R. W. Rendell, M. Ukaegbu, M. K. Ritala, S. M. Prokes, C. M. Hosten, M. A. Leskelä, and R. Kasica, “Large-area plasmonic hot-spot arrays: Sub-2 nm interparticle separations with plasma-enhanced atomic layer deposition of Ag on periodic arrays of Si nanopillars,” Opt. Express19(27), 26056–26064 (2011). [CrossRef] [PubMed]
  17. J. D. Caldwell, O. J. Glembocki, F. J. Bezares, N. D. Bassim, R. W. Rendell, M. Feygelson, M. Ukaegbu, R. Kasica, L. Shirey, and C. Hosten, “Plasmonic nanopillar arrays for large-area, high-enhancement surface-enhanced Raman scattering sensors,” ACS Nano5(5), 4046–4055 (2011). [CrossRef] [PubMed]
  18. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature391(6668), 667–669 (1998). [CrossRef]
  19. S. M. Williams, K. R. Rodriguez, S. Teeters-Kennedy, A. D. Stafford, S. R. Bishop, U. K. Lincoln, and J. V. Coe, “Use of the extraordinary infrared transmission of metallic subwavelength arrays to study the catalyzed reaction of methanol to formaldehyde on copper oxide,” J. Phys. Chem. B108(31), 11833–11837 (2004). [CrossRef]
  20. G. Vecchi, V. Giannini, and J. Gómez Rivas, “Shaping the fluorescent emission by lattice resonances in plasmonic crystals of nanoantennas,” Phys. Rev. Lett.102(14), 146807 (2009). [CrossRef] [PubMed]
  21. K. Ueno and H. Misawa, “Photochemical reaction fields with strong coupling between a photon and a molecule,” J. Photochem. Photobiol. Chem.221(2-3), 130–137 (2011). [CrossRef]
  22. K. T. Carron, W. Fluhr, M. Meier, A. Wokaun, and H. W. Lehmann, “Resonances of two-dimensional particle gratings in surface-enhanced Raman-scattering,” J. Opt. Soc. Am. B3(3), 430–440 (1986). [CrossRef]
  23. B. Lamprecht, G. Schider, R. T. Lechner, H. Ditlbacher, J. R. Krenn, A. Leitner, and F. R. Aussenegg, “Metal nanoparticle gratings: influence of dipolar particle interaction on the plasmon resonance,” Phys. Rev. Lett.84(20), 4721–4724 (2000). [CrossRef] [PubMed]
  24. R. Adato, A. A. Yanik, C. H. Wu, G. Shvets, and H. Altug, “Radiative engineering of plasmon lifetimes in embedded nanoantenna arrays,” Opt. Express18(5), 4526–4537 (2010). [CrossRef] [PubMed]
  25. M. I. Stockman, L. N. Pandey, L. S. Muratove, and T. F. George, “Optical-absorption and localization of eignenmodes in disordered clusters,” Phys. Rev. B51(1), 185–195 (1995). [CrossRef]
  26. J. P. Kottmann and O. J. F. Martin, “Retardation-induced plasmon resonances in coupled nanoparticles,” Opt. Lett.26(14), 1096–1098 (2001). [CrossRef] [PubMed]
  27. H. Im, K. C. Bantz, N. C. Lindquist, C. L. Haynes, and S. H. Oh, “Vertically oriented sub-10-nm plasmonic nanogap arrays,” Nano Lett.10(6), 2231–2236 (2010). [CrossRef] [PubMed]
  28. D. Weber, P. Albella, P. Alonso-González, F. Neubrech, H. Gui, T. Nagao, R. Hillenbrand, J. Aizpurua, and A. Pucci, “Longitudinal and transverse coupling in infrared gold nanoantenna arrays: long range versus short range interaction regimes,” Opt. Express19(16), 15047–15061 (2011). [CrossRef] [PubMed]
  29. B. Augié, X. M. Bendaña, W. L. Barnes, and F. J. García de Abajo, “Diffractive arrays of gold nanoparticles near an interface: critical role of the substrate,” Phys. Rev. B82(15), 155447 (2010). [CrossRef]
  30. www.lumerical.com
  31. Z. Chen, X. Li, A. Taflove, and V. Backman, “Backscattering enhancement of light by nanoparticles positioned in localized optical intensity peaks,” Appl. Opt.45(4), 633–638 (2006). [CrossRef] [PubMed]
  32. V. E. Ferry, L. A. Sweatlock, D. Pacifici, and H. A. Atwater, “Plasmonic nanostructure design for efficient light coupling into solar cells,” Nano Lett.8(12), 4391–4397 (2008). [CrossRef] [PubMed]
  33. E. D. Palik, Handbook of Optical Constants of Solids (Elsevier, 1998).
  34. C. Genet, M. P. van Exter, and J. P. Woerdman, “Fano-type interpretation of red shifts and red tails in hole array transmission spectra,” Opt. Commun.225(4-6), 331–336 (2003). [CrossRef]
  35. U. Fano, “Effects of configuration interaction on intensities and phase shifts,” Phys. Rev.124(6), 1866–1878 (1961). [CrossRef]
  36. V. Giannini, Y. Francescato, H. Amrania, C. C. Phillips, and S. A. Maier, “Fano resonances in nanoscale plasmonic systems: a parameter-free modeling approach,” Nano Lett.11(7), 2835–2840 (2011). [CrossRef] [PubMed]
  37. B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater.9(9), 707–715 (2010). [CrossRef] [PubMed]
  38. V. Giannini, A. I. Fernández-Domínguez, S. C. Heck, and S. A. Maier, “Plasmonic nanoantennas: Fundamentals and their use in controlling the radiative properties of nanoemitters,” Chem. Rev.111(6), 3888–3912 (2011). [CrossRef] [PubMed]
  39. B. Auguié and W. L. Barnes, “Collective resonances in gold nanoparticle arrays,” Phys. Rev. Lett.101(14), 143902 (2008). [CrossRef] [PubMed]
  40. J. Parsons, E. Hendry, C. P. Burrows, B. Auguiě, J. R. Sambles, and W. L. Barnes, “Localized surface-plasmon resonances in periodic nondiffracting metallic nanoparticle and nanohole arrays,” Phys. Rev. B79(7), 073412 (2009). [CrossRef]
  41. F. Hao, Y. Sonnefraud, P. Van Dorpe, S. A. Maier, N. J. Halas, and P. Nordlander, “Symmetry breaking in plasmonic nanocavities: Subradiant LSPR sensing and a tunable Fano resonance,” Nano Lett.8(11), 3983–3988 (2008). [CrossRef] [PubMed]
  42. N. Verellen, Y. Sonnefraud, H. Sobhani, F. Hao, V. V. Moshchalkov, P. Van Dorpe, P. Nordlander, and S. A. Maier, “Fano resonances in individual coherent plasmonic nanocavities,” Nano Lett.9(4), 1663–1667 (2009). [CrossRef] [PubMed]
  43. F. López-Tejeira, R. Paniagua-Dominguez, R. Rodriguez-Oliveros, and J. A. Sanchez-Gil, “Fano-like interference of plasmon resonances at a single rod-shaped Nanoantenna,” New J. Phys.14(2), 023035 (2012). [CrossRef]
  44. J. H. Van Vleck, F. Bloch, and M. Hamermesh, “theory of radar reflection from wires or thin metallic strips,” J. Appl. Phys.18(3), 274–294 (1947). [CrossRef]
  45. G. W. Bryant, F. J. García de Abajo, and J. Aizpurua, “Mapping the plasmon resonances of metallic nanoantennas,” Nano Lett.8(2), 631–636 (2008). [CrossRef] [PubMed]
  46. L. Novotny, “Effective wavelength scaling for optical antennas,” Phys. Rev. Lett.98(26), 266802 (2007). [CrossRef] [PubMed]
  47. E. Cubukcu and F. Capasso, “Optical nanorod antennas as dispersive one-dimensional Fabry-Perot resonators for surface plasmons,” Appl. Phys. Lett.95(20), 201101 (2009). [CrossRef]
  48. T. H. Taminiau, F. D. Stefani, and N. F. van Hulst, “Optical nanorod antennas modeled as cavities for dipolar emitters: evolution of sub- and super-radiant modes,” Nano Lett.11(3), 1020–1024 (2011). [CrossRef] [PubMed]
  49. P. Biagioni, J. S. Huang, and B. Hecht, “Nanoantennas for visible and infrared radiation,” Rep. Prog. Phys.75(2), 024402 (2012). [CrossRef] [PubMed]
  50. F. Neubrech, T. Kolb, R. Lovrincic, G. Fahsold, A. Pucci, J. Aizpurua, T. W. Cornelius, M. E. Toimil-Molares, R. Neumann, and S. Karim, “Resonances of individual metal nanowires in the infrared,” Appl. Phys. Lett.89(25), 253104 (2006). [CrossRef]
  51. R. L. Olmon, P. M. Krenz, A. C. Jones, G. D. Boreman, and M. B. Raschke, “Near-field imaging of optical antenna modes in the mid-infrared,” Opt. Express16(25), 20295–20305 (2008). [CrossRef] [PubMed]
  52. N. Félidj, S. L. Truong, J. Aubard, G. Lévi, J. R. Krenn, A. Hohenau, A. Leitner, and F. R. Aussenegg, “Gold particle interaction in regular arrays probed by surface enhanced Raman scattering,” J. Chem. Phys.120(15), 7141–7146 (2004). [CrossRef] [PubMed]
  53. M. Bohren and E. Wolf, Principles of Optics (Cambridge University Press, 1959).
  54. P. K. Jain, S. Eustis, and M. A. El-Sayed, “Plasmon coupling in nanorod assemblies: Optical absorption, discrete dipole approximation simulation, and exciton-coupling model,” J. Phys. Chem. B110(37), 18243–18253 (2006). [CrossRef] [PubMed]
  55. M. Kasha, H. R. Rawls, and M. Ashraf El-Bayoumi, “The exciton model in molecular spectroscopy,” Pure Appl. Chem.11(3-4), 371–392 (1965). [CrossRef]
  56. W. Rechberger, A. Hohenau, A. Leitner, J. R. Krenn, B. Lamprecht, and F. R. Aussenegg, “Optical properties of two interacting gold nanoparticles,” Opt. Commun.220(1-3), 137–141 (2003). [CrossRef]
  57. T. Atay, J. H. Song, and A. V. Nurmikko, “Strongly interacting plasmon nanoparticle pairs: From dipole-dipole interaction to conductively coupled regime,” Nano Lett.4(9), 1627–1631 (2004). [CrossRef]
  58. A. O. Pinchuk and G. C. Schatz, “Nanoparticle optical properties: Far- and near-field electrodynamic coupling in a chain of silver spherical nanoparticles,” Mater. Sci. Eng. B149(3), 251–258 (2008). [CrossRef]
  59. R. A. Flynn, I. Vurgaftman, K. L. Bussmann, B. S. Simpkins, C. S. Kim, and J. P. Long, “Transmission efficiency of surface plasmon polaritons across gaps in gold waveguides,” Appl. Phys. Lett.96(11), 111101 (2010). [CrossRef]
  60. W. H. Weber and G. W. Ford, “Propagation of optical excitations by dipolar interactions in metal nanoparticle chains,” Phys. Rev. B70(12), 125429 (2004). [CrossRef]
  61. S. Y. Park and D. Stroud, “Surface-plasmon dispersion relations in chains of metallic nanoparticles: An exact quasistatic calculation,” Phys. Rev. B69(12), 125418 (2004). [CrossRef]
  62. M. J. Kofke, D. H. Waldeck, and G. C. Walker, “Composite nanoparticle nanoslit arrays: A novel platform for LSPR mediated subwavelength optical transmission,” Opt. Express18(8), 7705–7713 (2010). [CrossRef] [PubMed]
  63. S. M. R. Z. Bajestani, M. Shabadi, and N. Talebi, “Analysis of plasmon propagation along a chain of metal nanospheres using the generalized multipole technique,” J. Opt. Soc. Am. B28(4), 937–943 (2011). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited