OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 25 — Dec. 3, 2012
  • pp: 27766–27780

Beam wandering statistics of twin thin laser beam propagation under generalized atmospheric conditions

Darío G. Pérez and Gustavo Funes  »View Author Affiliations

Optics Express, Vol. 20, Issue 25, pp. 27766-27780 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (2037 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Under the Geometrics Optics approximation is possible to estimate the covariance between the displacements of two thin beams after they have propagated through a turbulent medium. Previous works have concentrated in long propagation distances to provide models for the wandering statistics. These models are useful when the separation between beams is smaller than the propagation path—regardless of the characteristics scales of the turbulence. In this work we give a complete model for these covariances, behavior introducing absolute limits to the validity of former approximations. Moreover, these generalizations are established for non-Kolmogorov atmospheric models.

© 2012 OSA

OCIS Codes
(010.1300) Atmospheric and oceanic optics : Atmospheric propagation
(010.1330) Atmospheric and oceanic optics : Atmospheric turbulence
(280.0280) Remote sensing and sensors : Remote sensing and sensors
(280.4788) Remote sensing and sensors : Optical sensing and sensors

ToC Category:
Atmospheric and Oceanic Optics

Original Manuscript: September 4, 2012
Revised Manuscript: November 4, 2012
Manuscript Accepted: November 15, 2012
Published: November 29, 2012

Darío G. Pérez and Gustavo Funes, "Beam wandering statistics of twin thin laser beam propagation under generalized atmospheric conditions," Opt. Express 20, 27766-27780 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. Zhang and Z. Zeng, “Statistical properties of optical turbulence in a convective tank: experimental results,” J. Opt. A: Pure Appl. Opt.3, 236–241 (2001). [CrossRef]
  2. C. Innocenti and A. Consortini, “Refractive index gradient of the atmosphere at near ground levels,” J. Mod. Optics52, 671–689 (2005). [CrossRef]
  3. J. H. Churnside and R. J. Lataitis, “Angle-of-arrival fluctuations of a reflected beam in atmospheric turbulence,” J. Opt. Soc. Am. A4, 1264–1272 (1987). [CrossRef]
  4. E. Masciadri and J. Vernin, “Optical technique for inner-scale measurement: possible astronomical applications,” Appl. Opt.36, 1320–1327 (1997). [CrossRef] [PubMed]
  5. M. S. Andreeva, A. V. Koryabin, V. A. Kulikov, and V. I. Shmalhausen, “Diagnostics of the scale of turbulence using a divergent laser beam,” Moscow Univ. Phys. Bull.66, 627–630 (2011). [CrossRef]
  6. M. S. Andreeva, N. G. Iroshnikov, A. B. Koryabin, A. V. Larichev, and V. I. Shmalgauzen, “Usage of wavefront sensor for estimation of atmospheric turbulence parameters,” Optoelectronics, Instrumentation and Data Processing48, 197–204 (2012). [CrossRef]
  7. A. Consortini and K. O’Donnell, “Beam wandering of thin parallel beams through atmospheric turbulence,” Wave. Random Media3, S11–S28 (1991). [CrossRef]
  8. A. Consortini and K. O’Donnell, “Measuring the inner-scale of atmospheric turbulence by correlation of lateral displacements of thin parallel laser beams,” Wave. Random Media3, S11–S28 (1991). [CrossRef]
  9. A. Consortini, C. Innocenti, and G. Paoli, “Estimate method for outer scale of atmospheric turbulence,” Opt. Comm.214, 9–14 (2002). [CrossRef]
  10. Y. Y. Sun, A. Consortini, and Z. P. Li, “A new method for measuring the outer scale of atmospheric turbulence,” Wave. Random Complex17, 1–8 (2007). [CrossRef]
  11. E. Golbraikh and N. S. Kopeika, “Behavior of structure function of refraction coefficients in different turbulent field,” Appl. Opt.43(33), 6151–6156 (2004). [CrossRef] [PubMed]
  12. E. Golbraikh, H. Branover, N. S. Kopeika, and A. Zilberman, “Non-Kolmogorov atmospheric turbulence and optical signal propagation,” Nonlin. Processes Geophys.13, 297–301 (2006). [CrossRef]
  13. G. D. Boreman and C. Dainty, “Zernike expansions for non-Kolmogorov turbulence,” J. Opt. Soc. Am. A13, 517–522 (1996). [CrossRef]
  14. I. Toselli, L. C. Andrews, R. L. Phillips, and V. Ferrero, “Angle of arrival fluctuations for free space laser beam propagation through non-Kolmogorov turbulence,” Proc. SPIE6551, 65510E (2007). [CrossRef]
  15. C. Rao, W. Jiang, and N. Ling, “Atmospheric characterization with Shack-Hartmann wavefront sensors for non-Kolmogorov turbulence,” Opt. Eng.41(2), 534–541 (2002). [CrossRef]
  16. P. F. Lazorenko, “Differential image motion at non-Kolmogorov distortions of the turbulent wave-front,” Astron. Astrophys.382, 1125–1137 (2002). [CrossRef]
  17. P. F. Lazorenko, “Non-Kolmogorov features of differential image motion restored from the Multichannel Astrometric Photometer data,” Astron. Astrophys.396, 353–360 (2002). [CrossRef]
  18. E. Golbraikh and N. S. Kopeika, “Turbulence strength parameter in laboratory and natural optical experiments in non-Kolmogorov cases,” Opt. Commun.242, 333–338 (2004). [CrossRef]
  19. A. Zilberman, E. Golbraikh, and N. S. Kopeika, “Some limitations on optical communication reliability through Kolmogorov and non-Kolmogorov turbulence,” Opt. Commun.283, 1229–1235 (2010). [CrossRef]
  20. L. Zunino, D. G. Pérez, O. A. Rosso, and M. Garavaglia, “Characterization of Laser Propagation Through Turbulent Media by Quantifiers Based on the Wavelet Transform,” Fractals12, 223–233 (2004). [CrossRef]
  21. D. G. Pérez, L. Zunino, M. Garavaglia, and D. G. Pérez, “A fractional Brownian motion model for the turbulent refractive index in lightwave propagation,” Opt. Commun.242, 57–63 (2004). [CrossRef]
  22. D. G. Pérez, L. Zunino, and M. Garavaglia, “Modeling the turbulent wave-front phase as a fractional Brownian motion: a new approach,” J. Opt. Soc. Am. A21, 1962–1969 (2004). [CrossRef]
  23. D. G. Pérez and L. Zunino, “Generalized wave-front phase for non-Kolmogorov turbulence,” Opt. Lett.33, 572–574 (2008). [CrossRef] [PubMed]
  24. L. Zunino, D. G. Pérez, M. Garavaglia, O. A. Rosso, and D. G. Pérez, “Characterization of laser propagation through turbulent media by quantifiers based on the wavelet transform: dynamic study,” Physica A364, 79–86 (2006). [CrossRef]
  25. G. Funes, D. D. Gulich, L. Zunino, D. G. Pérez, M. Garavaglia, and D. G. Pérez, “Behavior of the laser beam wandering variance with the turbulent path length,” Opt. Commun.272, 476–479 (2007). [CrossRef]
  26. D. D. Gulich, G. Funes, L. Zunino, D. G. Pérez, and M. Garavaglia, “Angle-of-arrival variance’s dependence on the aperture size for indoor convective turbulence,” Opt. Commun.277, 241–246 (2007). [CrossRef]
  27. P. Beckman, “Signal Degeneration in Laser Beams Propagated Through a Turbulent atmosphere,” Radio Sci. J. Res. (NBS/USNC-URSI)69D, 629–640 (1965).
  28. Equations (1) and (2) are obtained in [7] from approximating the beam displacements through Geometric Optics. Since there is a linear relationship between these displacements and the refractive index perturbation, through integrals and derivatives, their covariances are functionals of it. This is true regardless of the model employed to evaluate the covariance of the turbulent refractive index.
  29. V. I. Tatarskĭ, Wave Propagation in a Turbulent Atmosphere (Nauka Press, Moscow, 1967).
  30. L. C. Andrews and R. L. Phillips, Laser Beam Propagation through Random Media (SPIE, 1998).
  31. C. Innocenti and A. Consortini, “Estimate of characteristic scales of atmospheric turbulence by thin beams: Comparison between the von Karman and Hill-Andrews models,” J. Mod. Optics51(3), 333–342 (2004). [CrossRef]
  32. D. G. Pérez, A. Férnandez, G. Funes, D. Gulich, and L. Zunino, “Retrieving atmospheric turbulence features from differential laser tracking motion data,” Proc. SPIE8535, 853508 (2012). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material

» Media 1: PDF (779 KB)     
» Media 2: PDF (426 KB)     
» Media 3: PDF (152 KB)     
» Media 4: PDF (183 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited