OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 25 — Dec. 3, 2012
  • pp: 27781–27791

Long-range guided THz radiation by thin layers of water

Robert Sczech, Jaime Gómez Rivas, Audrey Berrier, Vincenzo Giannini, Giuseppe Pirruccio, Christian Debus, Heiko Schäfer-Eberwein, and Peter Haring Bolívar  »View Author Affiliations


Optics Express, Vol. 20, Issue 25, pp. 27781-27791 (2012)
http://dx.doi.org/10.1364/OE.20.027781


View Full Text Article

Acrobat PDF (5229 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We propose a novel method to guide THz radiation with low losses along thin layers of water. This approach is based on the coupling of evanescent surface fields at the opposite sides of the thin water layer surrounded by a dielectric material, which leads to a maximum field amplitude at the interfaces and a reduction of the energy density inside the water film. In spite of the strong absorption of water in this frequency range, calculations show that the field distribution can lead to propagation lengths of several centimeters. By means of attenuated total reflection measurements we demonstrate the coupling of incident THz radiation to the long-range surface guided modes across a layer of water with a thickness of 24 μm. This first demonstration paves the way for THz sensing in aqueous environments.

© 2012 OSA

OCIS Codes
(230.7390) Optical devices : Waveguides, planar
(310.2790) Thin films : Guided waves
(040.2235) Detectors : Far infrared or terahertz
(300.6495) Spectroscopy : Spectroscopy, teraherz
(050.6624) Diffraction and gratings : Subwavelength structures

ToC Category:
Thin Films

History
Original Manuscript: September 7, 2012
Revised Manuscript: November 2, 2012
Manuscript Accepted: November 2, 2012
Published: November 29, 2012

Citation
Robert Sczech, Jaime Gómez Rivas, Audrey Berrier, Vincenzo Giannini, Giuseppe Pirruccio, Christian Debus, Heiko Schäfer-Eberwein, and Peter Haring Bolívar, "Long-range guided THz radiation by thin layers of water," Opt. Express 20, 27781-27791 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-25-27781


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. K.H. Yang, P.L. Richards, and Y.R. Shen, “Generation of far-infrared radiation by picosecond light pulses in LiNbO3,” Appl. Phys. Lett.19, 320–323 (1971). [CrossRef]
  2. D.H. Auston, A.M. Glass, and A.A. Ballman, “Optical rectification by impurities in polar crystals,” Phys. Rev. Lett.28, 897–900 (1972). [CrossRef]
  3. S.L. Dexheimer, Terahertz Spectroscopy: Principles and Applications (ed.) (CRC Press, 2008).
  4. B. Ferguson and X. Zhang, “Materials for terahertz science and technology,” Nat. Materials1, 26–33 (2002). [CrossRef]
  5. B. M. Fischer, M. Walther, and P.U. Jepsen, “Far-infrared vibrational modes of DNA components studied by terahertz time-domain spectroscopy,” Phys. Med. Biol.47, 3807–3814 (2002). [CrossRef] [PubMed]
  6. O. P. Cherkasova, M. M. Nazarov, A. P. Shkurinov, and V. I. Fedorov, “Terahertz spectroscopy of biological molecules,” Radiophys. and Quantum Electronics52, 518–523 (2009). [CrossRef]
  7. X-C Zhang, “Terahertz wave imaging: horizons and hurdles,” Phys. Med. Biol.473667–3677 (2002). [CrossRef] [PubMed]
  8. J.A. Zeitler, P.F. Taday, D.A. Newnham, M. Pepper, K.C. Gordon, and T. Rades, “Terahertz pulsed spectroscopy and imaging in the pharmaceutical setting - a review,” J. Pharm. Pharmacol.59, 209–223 (2007). [CrossRef] [PubMed]
  9. G. Gallot, S.P. Jamison, R.W. McGowan, and D. Grischkowsky, “Terahertz waveguides,” J. Opt. Soc. Am. B17, 851–863 (2000). [CrossRef]
  10. K. Wang and D.M. Mittleman, “Metal wires for terahertz wave-guiding,” Nature432, 376–379 (2004). [CrossRef]
  11. J. Zhang and D. Grischkowsky, “Waveguide terahertz time-domain spectroscopy of nanometer water layers,” Opt. Lett.29, 1617–1619 (2004). [CrossRef] [PubMed]
  12. J. Liu, R. Mendis, and D.M. Mittleman, “The transition from a TEM-like mode to a plasmonic mode in parallel-plate waveguides,” Appl. Phys. Lett.98, 231113 (2011). [CrossRef]
  13. B.K. Juluri, Sz.-C.S. Lin, T.R. Walker, L. Jensen, and T.J. Huang, “Propagation of designer surface plasmons in structured conductor surfaces with parabolic gradient index,” Opt. Express17, 2997–3006 (2009). [CrossRef] [PubMed]
  14. A.I. Fernández-Domínguez, E. Moreno, L. Martín-Moreno, and F.J. García-Vidal, “Guiding terahertz waves along subwavelength channels,” Phys. Rev. B79, 233104 (2009). [CrossRef]
  15. N. Yu, Q.J. Wang, M.A. Kats, J.A. Fan, S.P. Khanna, L. Li, A.G. Davies, E.H. Linfield, and F. Capasso, “Designer spoof-surface-plasmon structures collimate terahertz laser beams,” Nature Mater.9, 730–735 (2010). [CrossRef]
  16. D. Martin-Cano, M.L. Nesterov, A.I. Fernández-Domínguez, F.J. García-Vidal, L. Martín-Moreno, and E. Moreno, “Domino plasmons for subwavelength terahertz circuitry,” Opt. Express18, 754–764 (2010). [CrossRef] [PubMed]
  17. A.W. Snyder and J.D. Love, Optical waveguide theory (Chapman and Hall, 1983).
  18. R. Mendis and D. Grischkowsky, “Plastic ribbon THz waveguides,” J. Appl. Phys.88, 4449–4451 (2000). [CrossRef]
  19. P. Yeh, Optical waves in layered media (John Wiley and Sons, 1988).
  20. H. Raether, Surface Polaritons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, 1988).
  21. D. Sarid, “Long-range surface-plasma waves on very thin metal films,” Phys. Rev. Lett.47, 1927–1930 (1981). [CrossRef]
  22. P. Berini, “Long range surface plasmon polaritons,” Adv. Opt. Photon.1, 484–588 (2009). [CrossRef]
  23. Y. Zhang, A. Berrier, and J. Gómez Rivas, “Long range surface plasmon polaritons at terahertz frequencies in thin semiconductor layer,” Chin. Opt. Lett.9, 110014 (2011). [CrossRef]
  24. L.H. Smith, M. C. Taylor, I. R. Hooper, and W.L. Barnes, “Field profiles of coupled surface plasmon-polaritons,” J. Mod. Opt.55, 2929–2943 (2008). [CrossRef]
  25. G. J. Kovacs, “Surface polariton in the ATR angular spectra of a thin iron film bounded by dielectric layers,” J. Opt. Soc. Am.68, 1325–1332 (1978). [CrossRef]
  26. F. Yang, J. R. Sambles, and G. W. Bradberry, “Long-Range surface modes supported by thin films,” Phys. Rev. B44, 5855–5872 (1991). [CrossRef]
  27. V. Giannini, Y. Zhang, M. Forcales, and J. Gómez Rivas, “Long-range surface polaritons in ultra-thin films of silicon,” Opt. Express16, 19674 (2008).
  28. C. Arnold, Y. Zhang, and J. Gómez Rivas, “Long range surface polaritons supported by lossy thin films,” Appl. Phys. Lett.96, 113108 (2010). [CrossRef]
  29. Y. Zhang, C. Arnold, P. Offermans, and J. Gómez Rivas, “Surface wave sensors based on nanometric layers of strongly absorbing materials,” Opt. Express20, 9431–9441 (2012). [CrossRef] [PubMed]
  30. H.J. Liebe, G.A. Hufford, and T. Manabe, “A model for the complex permittivity of water at frequencies below 1 THz,” Int. J. Infrared Milli.12, 677682 (1991).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited