OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 25 — Dec. 3, 2012
  • pp: 27830–27837

Displacement interferometry with stabilization of wavelength in air

Josef Lazar, Miroslava Holá, Ondřej Číp, Martin Čížek, Jan Hrabina, and Zdeněk Buchta  »View Author Affiliations


Optics Express, Vol. 20, Issue 25, pp. 27830-27837 (2012)
http://dx.doi.org/10.1364/OE.20.027830


View Full Text Article

Enhanced HTML    Acrobat PDF (1553 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present a concept of suppression of the influence of variations of the refractive index of air in displacement measuring interferometry. The principle is based on referencing of wavelength of the coherent laser source in atmospheric conditions instead of traditional stabilization of the optical frequency and indirect evaluation of the refractive index of air. The key advantage is in identical beam paths of the position measuring interferometers and the interferometer used for the wavelength stabilization. Design of the optical arrangement presented here to verify the concept is suitable for real interferometric position sensing in technical practice especially where a high resolution measurement within some limited range in atmospheric conditions is needed, e.g. in nanometrology.

© 2012 OSA

OCIS Codes
(120.0120) Instrumentation, measurement, and metrology : Instrumentation, measurement, and metrology
(120.3180) Instrumentation, measurement, and metrology : Interferometry

ToC Category:
Instrumentation, Measurement, and Metrology

History
Original Manuscript: October 4, 2012
Revised Manuscript: November 17, 2012
Manuscript Accepted: November 17, 2012
Published: November 29, 2012

Citation
Josef Lazar, Miroslava Holá, Ondřej Číp, Martin Čížek, Jan Hrabina, and Zdeněk Buchta, "Displacement interferometry with stabilization of wavelength in air," Opt. Express 20, 27830-27837 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-25-27830


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. G. D. Rovera, F. Ducos, J. J. Zondy, O. Acef, J. P. Wallerand, J. C. Knight, and P. S. Russell, “Absolute frequency measurement of an I-2 stabilized Nd:YAG optical frequency standard,” Meas. Sci. Technol.13(6), 918–922 (2002). [CrossRef]
  2. T. J. Quinn, “Practical realization of the definition of the metre, including recommended radiations of other optical frequency standards (2001),” Metrologia40(2), 103–133 (2003). [CrossRef]
  3. B. Edlén, “The refractive index of air,” Metrologia2(2), 71–80 (1966). [CrossRef]
  4. B. Bönsch and E. Potulski, “Measurement of the refractive index of air and comparison with modified Edlen’s formulae,” Metrologia35(2), 133–139 (1998). [CrossRef]
  5. K. P. Birch and M. J. Downs, “An updated Edlen equation for the refractive-index of air,” Metrologia30(3), 155–162 (1993). [CrossRef]
  6. P. E. Ciddor, “Refractive index of air: New equations for the visible and near infrared,” Appl. Opt.35(9), 1566–1573 (1996). [CrossRef] [PubMed]
  7. K. P. Birch and M. J. Downs, “Correction to the updated Edlen equation for the refractive-index of air,” Metrologia31(4), 315–316 (1994). [CrossRef]
  8. M. Ishige, M. Aketagawa, T. B. Quoc, and Y. Hoshino, “Measurement of air-refractive-index fluctuation from frequency change using a phase modulation homodyne interferometer and an external cavity laser diode,” Meas. Sci. Technol.20(8), 084019 (2009). [CrossRef]
  9. J. Lazar, O. Číp, and B. Růžička, “The design of a compact and tunable extended-cavity semiconductor laser,” Meas. Sci. Technol.15(6–N), 9 (2004).
  10. B. Mikel, B. Růžička, O. Číp, J. Lazar, and P. Jedlička, “Highly coherent tunable semiconductor lasers in metrology of length,” Proc. SPIE5036, 8–13 (2003). [CrossRef]
  11. T. B. Quoc, M. Ishige, Y. Ohkubo, and M. Aketagawa, “Measurement of air-refractive-index fluctuation from laser frequency shift with uncertainty of order 10(−9),” Meas. Sci. Technol.20(12), 125302 (2009). [CrossRef]
  12. S. Topcu, Y. Alayli, J. P. Wallerand, and P. Juncar, “Heterodyne refractometer and air wavelength reference at 633 nm,” Eur. Phys. J.: Appl. Phys.24, 85–90 (2003).
  13. H. Höfler, J. Molnar, C. Schröder, and K. Kulmus, “Interferometrische Wegmessung mit automatischer Brechzahlkompensation,” Tech. Mess57, 346–350 (1990).
  14. J. Lazar, O. Číp, M. Čížek, J. Hrabina, and Z. Buchta, “Suppression of air Refractive index variations in high-resolution interferometry,” Sensors (Basel)11(8), 7644–7655 (2011). [CrossRef] [PubMed]
  15. J. Lazar, O. Číp, M. Čížek, J. Hrabina, and Z. Buchta, “Interferometry with direct compensation of fluctuations of refractive index of air,” Proc. SPIE7746(77460E), 1–6 (2010).
  16. J. Lazar, O. Číp, M. Čížek, J. Hrabina, and Z. Buchta, “Standing wave interferometer with stabilization of wavelength on air,” Tech. Mess78(11), 484–488 (2011). [CrossRef]
  17. J. Lazar, O. Číp, J. Oulehla, P. Pokorný, A. Fejfar, and J. Stuchlík, “Position measurement in standing wave interferometer for metrology of length,” Proc. SPIE8306, 830607, 830607-7 (2011). [CrossRef]
  18. J. Lazar, M. Holá, O. Číp, M. Čížek, J. Hrabina, and Z. Buchta, “Refractive index compensation in over-determined interferometric systems,” Sensors (Basel Switzerland)12(10), 14084–14094 (2012). [CrossRef]
  19. O. Číp and F. Petrů, “A scale-linearization method for precise laser interferometry,” Meas. Sci. Technol.11(2), 133–141 (2000). [CrossRef]
  20. K.-N. Joo, J. D. Ellis, J. W. Spronck, and R. H. M. Schmidt, “Real-time wavelength corrected heterodyne laser interferometry,” Precis. Eng.35(1), 38–43 (2011). [CrossRef]
  21. R. W. Fox, B. R. Washburn, N. R. Newbury, and L. Hollberg, “Wavelength references for interferometry in air,” Appl. Opt.44(36), 7793–7801 (2005). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited