OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 25 — Dec. 3, 2012
  • pp: 27838–27846

Simultaneous pulse generation of orthogonally polarized dual-wavelength at 1091 and 1095 nm by coupled stimulated Raman scattering

Haitao Huang, Deyuan Shen, and Jingliang He  »View Author Affiliations


Optics Express, Vol. 20, Issue 25, pp. 27838-27846 (2012)
http://dx.doi.org/10.1364/OE.20.027838


View Full Text Article

Enhanced HTML    Acrobat PDF (1039 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Intracavity coupled Raman conversions in KTP and KTA driven by a laser diode (LD) pumped Nd:YAG/Cr4+:YAG 1064 nm laser is demonstrated in this paper. Simultaneous pulse generation of orthogonally polarized dual-wavelength at 1091 and 1095 nm are achieved by balancing the Raman gain of KTP and KTA. Under the LD pump power of 8.1 W, the maximum average output powers at 1091 and 1095 nm are 170 and 150 mW, respectively. The corresponding pulse width and repetition rate are measured to be 3.3 ns and 11.2 kHz, with the pulse peak powers calculated to be 4.6 and 4.1 kW, respectively. The laser source with such small wavelength separation and orthogonal polarization provides the interest for terahertz generation in the 1 THz range. Our study provides a simple and flexible method to achieve orthogonally polarized dual-wavelength laser source by Raman-based intracavity coupled nonlinear frequency conversions.

© 2012 OSA

OCIS Codes
(140.3480) Lasers and laser optics : Lasers, diode-pumped
(190.4400) Nonlinear optics : Nonlinear optics, materials
(190.5650) Nonlinear optics : Raman effect

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: October 4, 2012
Manuscript Accepted: November 9, 2012
Published: November 29, 2012

Citation
Haitao Huang, Deyuan Shen, and Jingliang He, "Simultaneous pulse generation of orthogonally polarized dual-wavelength at 1091 and 1095 nm by coupled stimulated Raman scattering," Opt. Express 20, 27838-27846 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-25-27838


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. P. Boixeda, L. P. Carmona, S. Vano-Galvan, P. Jaén, and S. W. Lanigan, “Lanigan, “Advances in treatment of cutaneous and subcutaneous vascular anomalies by pulsed dual wavelength 595- and 1064-nm application,” Med. Laser Appl.23(3), 121–126 (2008). [CrossRef]
  2. D. G. Abdelsalam, R. Magnusson, and D. Kim, “Single-shot, dual-wavelength digital holography based on polarizing separation,” Appl. Opt.50(19), 3360–3368 (2011). [CrossRef] [PubMed]
  3. U. Sharma, C.-S. Kim, and J. U. Kang, “Highly stable tunable dual-wavelength Q-switched fiber laser for DIAL applications,” Phot. Tech. Lett.16(5), 1277–1279 (2004). [CrossRef]
  4. L. G. Fei and S. L. Zhang, “The discovery of nanometer fringes in laser self-mixing interference,” Opt. Commun.273(1), 226–230 (2007). [CrossRef]
  5. S. L. Zhang, Y. D. Tan, and Y. Li, “Orthogonally polarized dual frequency lasers and applications in self-sensing metrology,” Meas. Sci. Technol.21(5), 054016 (2010). [CrossRef]
  6. Y. F. Chen, “cw dual-wavelength operation of a diode-end-pumped Nd:YVO4 laser,” Appl. Phys. B70(4), 475–478 (2000). [CrossRef]
  7. K. Lünstedt, N. Pavel, K. Petermann, and G. Huber, “Continuous-wave simultaneous dual-wavelength operation at 912nm and 1063nm in Nd:GdVO4,” Appl. Phys. B86(1), 65–70 (2006). [CrossRef]
  8. H. T. Huang, J. L. He, B. T. Zhang, J. F. Yang, J. L. Xu, C. H. Zuo, and X. T. Tao, “V3+:YAG as the saturable absorber for a diode-pumped quasi-three-level dual-wavelength Nd:GGG laser,” Opt. Express18(4), 3352–3357 (2010). [CrossRef] [PubMed]
  9. K. Zhong, J. Q. Yao, C. L. Sun, C. G. Zhang, Y. Y. Miao, R. Wang, D. G. Xu, F. Zhang, Q. Zhang, D. Sun, and S. T. Yin, “Efficient diode-end-pumped dual-wavelength Nd, Gd:YSGG laser,” Opt. Lett.36(19), 3813–3815 (2011). [CrossRef] [PubMed]
  10. B. Wu, P. P. Jiang, D. Z. Yang, T. Chen, J. Kong, and Y. H. Shen, “Compact dual-wavelength Nd:GdVO4 laser working at 1063 and 1065 nm,” Opt. Express17(8), 6004–6009 (2009). [CrossRef] [PubMed]
  11. Y. Xing-Peng, L. Qiang, C. Hai-Long, F. Xing, G. Ma-Li, and W. Dong-Sheng, “A novel orthogonally linearly polarized Nd:YVO4 laser,” Chin. Phys. B19(8), 084202 (2010). [CrossRef]
  12. W. D. Tan, D. Y. Tang, C. W. Xu, J. Zhang, H. H. Yu, and H. J. Zhang, “Dual-wavelength passively mode-locked Nd:GdVO4 laser with orthogonal polarizations,” Appl. Phys. B102(4), 775–779 (2011). [CrossRef]
  13. Y. P. Huang, C. Y. Cho, Y. J. Huang, and Y. F. Chen, “Orthogonally polarized dual-wavelength Nd:LuVO4 laser at 1086 nm and 1089 nm,” Opt. Express20(5), 5644–5651 (2012). [CrossRef] [PubMed]
  14. H. J. Eichler, G. M. A. Gad, A. A. Kaminskii, and H. Rhee, “Raman crystal lasers in the visible and near-infrared,” J. Zhejiang Univ. Sci.4(3), 241–253 (2003). [CrossRef] [PubMed]
  15. H. M. Pask, P. Dekker, R. P. Mildren, D. J. Spence, and J. A. Piper, “Wavelength-versatile visible and UV sources based on crystalline Raman lasers,” Prog. Quantum Electron.32(3-4), 121–158 (2008). [CrossRef]
  16. Y. T. Chang, Y. P. Huang, K. W. Su, and Y. F. Chen, “Diode-pumped multi-frequency Q-switched laser with intracavity cascade Raman emission,” Opt. Express16(11), 8286–8291 (2008). [CrossRef] [PubMed]
  17. T. Taniuchi, J. Shikata, and H. Ito, “Tunable terahertz-wave generation in DAST crystal with dual-wavelength KTP optical parametric oscillator,” Electron. Lett.36(16), 1414–1416 (2000). [CrossRef]
  18. V. Pasiskevicius, A. Fragemann, F. Laurell, R. Butkus, V. Smilgevicius, and A. Piskarskas, “Enhanced stimulated Raman scattering in optical parametric oscillators from periodically poled KTiOPO4,” Appl. Phys. Lett.82(3), 325–327 (2003). [CrossRef]
  19. Z. J. Liu, Q. P. Wang, X. Y. Zhang, Z. J. Liu, J. Chang, H. Wang, S. S. Zhang, S. Z. Fan, G. F. Jin, X. T. Tao, S. J. Zhang, and H. J. Zhang, “Coexistent optical parametric oscillation and stimulated Raman scattering in KTiOAsO4.,” Opt. Express16(21), 17092–17097 (2008). [CrossRef] [PubMed]
  20. H. T. Huang, J. L. He, S. D. Liu, J. F. Yang, B. T. Zhang, and F. Q. Liu, “Efficient generation of 1096nm and 1572nm by simultaneous stimulated Raman scattering and optical parametric oscillation in one KTiOPO4 crystal,” Appl. Phys. B103(1), 129–135 (2011). [CrossRef]
  21. H. T. Huang, J. L. He, S. D. Liu, F. Q. Liu, X. Q. Yang, H. W. Yang, Y. Yang, and H. Yang, “Synchronized generation of 1534nm and 1572nm by the mixed optical parameter oscillation,” Laser Phys. Lett.8(5), 358–362 (2011). [CrossRef]
  22. Y. F. Chen, “Stimulated Raman scattering in a potassium titanyl phosphate crystal: simultaneous self-sum frequency mixing and self-frequency doubling,” Opt. Lett.30(4), 400–402 (2005). [CrossRef] [PubMed]
  23. V. Pasiskevicius, C. Canalias, and F. Laurell, “Highly efficient stimulated Raman scattering of picosecond pulses in KTiOPO4,” Appl. Phys. Lett.88(4), 041110 (2006). [CrossRef]
  24. H. T. Huang, J. L. He, and Y. Wang, “Second Stokes 1129 nm generation in gray-trace resistance KTP intracavity driven by a diode-pumped Q-switched Nd:YVO4 laser,” Appl. Phys. B102(4), 873–878 (2011). [CrossRef]
  25. Z. J. Liu, Q. P. Wang, X. Y. Zhang, Z. J. Liu, J. Chang, H. Wang, S. S. Zhang, S. Z. Fan, W. J. Sun, G. F. Jin, X. T. Tao, S. J. Zhang, and H. J. Zhang, “A KTiOAsO4 Raman laser,” Appl. Phys. B94(4), 585–588 (2009). [CrossRef]
  26. Z. J. Liu, Q. P. Wang, X. Y. Zhang, S. S. Zhang, J. Chang, Z. H. Cong, W. J. Sun, G. F. Jin, X. T. Tao, Y. X. Sun, and S. J. Zhang, “A diode side-pumped KTiOAsO4 Raman laser,” Opt. Express17(9), 6968–6974 (2009). [CrossRef] [PubMed]
  27. A. Demidovich, P. A. Apanasevich, L. E. Batay, A. S. Grabtchikov, A. N. Kuzmin, V. A. Lisinetskii, V. A. Orlovich, O. V. Kuzmin, V. L. Hait, W. Kiefer, and M. B. Danailov, “Sub-nanosecond microchip laser with intracavity Raman conversion,” Appl. Phys. B76(5), 509–514 (2003). [CrossRef]
  28. S. Pearce, C. L. M. Ireland, and P. E. Dyer, “Solid-state Raman laser generating <1 ns, multi-kilohertz pulses at 1096 nm,” Opt. Commun.260(2), 680–686 (2006). [CrossRef]
  29. W. Chen, Y. Inagawa, T. Omatsu, M. Tateda, N. Takeuchi, and Y. Usuki, “Diode-pumped, self-stimulating, passively Q-switched Nd3+:PbWO4 Raman laser,” Opt. Commun.194(4-6), 401–407 (2001). [CrossRef]
  30. W. Koechner, Solid-State Laser Engineering, 6th ed. (Springer, 2006).
  31. F. L. Galeener, J. C. Mikkelsen, R. H. Geils, and W. J. Mosby, “The relative Raman cross sections of vitreous SiO2, GeO2, B2O3, and P2O5,” Appl. Phys. Lett.32(1), 34–36 (1978). [CrossRef]
  32. P. Zhao, S. Ragam, Y. J. Ding, and I. B. Zotova, “Ding, and Ioulia B. Zotova, “Power scalability and frequency agility of compact terahertz source based on frequency mixing from solid-state lasers,” Appl. Phys. Lett.98(13), 131106 (2011). [CrossRef]
  33. J. H. Liu, B. Ozygus, S. H. Yang, J. Erhard, U. Seelig, A. Ding, H. Weber, X. L. Meng, L. Zhu, L. J. Qin, C. L. Du, X. G. Xu, and Z. S. Shao, “Efficient passive Q-switching operation of a diode-pumped Nd:GdVO4 laser with a Cr4+:YAG saturable absorber,” J. Opt. Soc. Am. B20(4), 652–661 (2003). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited