OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 25 — Dec. 3, 2012
  • pp: 27874–27887

Miniature micro-wire based optical fiber-field access device

Simon Pevec and Denis Donlagic  »View Author Affiliations


Optics Express, Vol. 20, Issue 25, pp. 27874-27887 (2012)
http://dx.doi.org/10.1364/OE.20.027874


View Full Text Article

Enhanced HTML    Acrobat PDF (3125 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

This paper presents an optical fiber-field access device suitable for use in different in-line fiber-optics’ systems and fiber-based photonics’ components. The proposed device utilizes a thin silica micro-wire positioned in-between two lead-in single mode fibers. The thin micro-wire acts as a waveguide that allows for low-loss interconnection between both lead-in fibers, while providing interaction between the guided optical field and the surrounding medium or other photonic structures. The field interaction strength, total loss, and phase matching conditions can be partially controlled by device-design. The presented all-fiber device is miniature in size and utilizes an all-silica construction. It has mechanical properties suitable for handling and packaging without the need for additional mechanical support or reinforcements. The proposed device was produced using a micromachining method that utilizes selective etching of a purposely-produced phosphorus pentoxide-doped optical fiber. This method is simple, compatible with batch processes, and has good high-volume manufacturing potential.

© 2012 OSA

OCIS Codes
(060.2310) Fiber optics and optical communications : Fiber optics
(060.2370) Fiber optics and optical communications : Fiber optics sensors
(160.2290) Materials : Fiber materials
(230.0230) Optical devices : Optical devices
(230.4000) Optical devices : Microstructure fabrication
(230.2285) Optical devices : Fiber devices and optical amplifiers
(160.4236) Materials : Nanomaterials

ToC Category:
Fiber Optics and Optical Communications

History
Original Manuscript: October 1, 2012
Revised Manuscript: November 14, 2012
Manuscript Accepted: November 20, 2012
Published: November 29, 2012

Citation
Simon Pevec and Denis Donlagic, "Miniature micro-wire based optical fiber-field access device," Opt. Express 20, 27874-27887 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-25-27874


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. Bharadwaj, V. V. R. Sai, K. Thakare, A. Dhawangale, T. Kundu, S. Titus, P. K. Verma, and S. Mukherji, “Evanescent wave absorbance based fiber optic biosensor for label-free detection of E. coli at 280 nm wavelength,” Biosens. Bioelectron.26(7), 3367–3370 (2011). [CrossRef] [PubMed]
  2. L. K. Chau, Y. F. Lin, S. F. Cheng, and T. J. Lin, “Fiber-optic chemical and biochemical probes based on localized surface plasmon resonance,” Sensor. Actuat. Biol. Chem.113(1), 100–105 (2006).
  3. J. M. Corres, F. J. Arregui, and I. R. Matias, “Design of humidity sensors based on tapered optical fibers,” J. Lightwave Technol.24(11), 4329–4336 (2006). [CrossRef]
  4. J. D. Gordon, T. L. Lowder, R. H. Selfridge, and S. M. Schultz, “Optical D-fiber-based volatile organic compound sensor,” Appl. Opt.46(32), 7805–7810 (2007). [CrossRef] [PubMed]
  5. H. S. Haddock, P. M. Shankar, and R. Mutharasan, “Evanescent sensing of biomolecules and cells,” Sensor. Actuat. Biol. Chem.88(1), 67–74 (2003).
  6. Z. M. Hale, F. P. Payne, R. S. Marks, C. R. Lowe, and M. M. Levine, “The single mode tapered optical fibre loop immunosensor,” Biosens. Bioelectron.11(1–2), 137–148 (1996). [CrossRef]
  7. K. Q. Kieu and M. Mansuripur, “Biconical fiber taper sensors,” IEEE Photon. Technol. Lett.18(21), 2239–2241 (2006). [CrossRef]
  8. J. Kvavle, S. Schultz, and R. Selfridge, “Ink-jetting AJL8/APC for D-fiber electric field sensors,” Appl. Opt.48(28), 5280–5286 (2009). [CrossRef] [PubMed]
  9. S. M. Lee, S. S. Saini, and M. Y. Jeong, “Simultaneous Measurement of Refractive Index, Temperature, and Strain Using Etched-Core Fiber Bragg Grating Sensors,” IEEE Photon. Technol. Lett.22(19), 1431–1433 (2010). [CrossRef]
  10. P. Polynkin, A. Polynkin, N. Peyghambarian, and M. Mansuripur, “Evanescent field-based optical fiber sensing device for measuring the refractive index of liquids in microfluidic channels,” Opt. Lett.30(11), 1273–1275 (2005). [CrossRef] [PubMed]
  11. M. I. Zibaii, A. Kazemi, H. Latifi, M. K. Azar, S. M. Hosseini, and M. H. Ghezelaiagh, “Measuring bacterial growth by refractive index tapered fiber optic biosensor,” J. Photochem. Photobiol. B101(3), 313–320 (2010). [CrossRef] [PubMed]
  12. H. Choi, Y. Jeong, and K. Oh, “Wide, tunable band rejection filter based on micro-optical waveguide on microactuating platform covering O, E, S, C, L, and U bands,” Opt. Lett.36(4), 484–486 (2011). [CrossRef] [PubMed]
  13. C. A. Millar, M. C. Brierley, and S. R. Mallinson, “Exposed-core single-mode-fiber channel-dropping filter using a high-index overlay waveguide,” Opt. Lett.12(4), 284–286 (1987). [CrossRef] [PubMed]
  14. K. R. Sohn and J. W. Song, “Tunable in-line fiber optic comb filter using a side-polished single-mode fiber coupler with LiNbO3 overlay and intermediate coupling layer,” Opt. Commun.203(3–6), 271–276 (2002). [CrossRef]
  15. M. Wilkinson, A. Bebbington, S. A. Cassidy, and P. Mckee, “D-fibre filter for erbium gain spectrum flattening,” Electron. Lett.28(2), 131–132 (1992). [CrossRef]
  16. C. L. Lee, Z. Y. Weng, C. J. Lin, and Y. Y. Lin, “Leakage coupling of ultrasensitive periodical silica thin-film long-period grating coated on tapered fiber,” Opt. Lett.35(24), 4172–4174 (2010). [CrossRef] [PubMed]
  17. K. H. Smith, B. L. Ipson, T. L. Lowder, A. R. Hawkins, R. H. Selfridge, and S. M. Schultz, “Surface-relief fiber Bragg gratings for sensing applications,” Appl. Opt.45(8), 1669–1675 (2006). [CrossRef] [PubMed]
  18. V. K. S. Hsiao, Z. Li, Z. Chen, P. C. Peng, and J. Tang, “Optically controllable side-polished fiber attenuator with photoresponsive liquid crystal overlay,” Opt. Express17(22), 19988–19995 (2009). [CrossRef] [PubMed]
  19. S. Pu, X. Chen, Y. Chen, Y. Xu, W. Liao, L. Chen, and Y. Xia, “Fiber-optic evanescent field modulator using a magnetic fluid as the cladding,” J. Appl. Phys.99(9), 093516 (2006). [CrossRef]
  20. X. Tian, X. Cheng, W. Wu, Y. Luo, Q. Zhang, B. Zhu, and G. Zou, “Reversible All-Optical Modulation Based on Evanescent Wave Absorption of a Single-Mode Fiber With Azo-Polymer Overlay,” IEEE Photon. Technol. Lett.22(18), 1352–1354 (2010). [CrossRef]
  21. M. Cai and K. Vahala, “Highly efficient optical power transfer to whispering-gallery modes by use of a symmetrical dual-coupling configuration,” Opt. Lett.25(4), 260–262 (2000). [CrossRef] [PubMed]
  22. M. K. Chin and S. T. Ho, “Design and modeling of waveguide-coupled single-mode microring resonators,” J. Lightwave Technol.16(8), 1433–1446 (1998). [CrossRef]
  23. G. Griffel, S. Arnold, D. Taskent, A. Serpengüzel, J. Connolly, and N. Morris, “Morphology-dependent resonances of a microsphere-optical fiber system,” Opt. Lett.21(10), 695–697 (1996). [CrossRef] [PubMed]
  24. A. B. Matsko and V. S. Ilchenko, “Optical resonators with whispering-gallery modes - Part I: Basics,” IEEE J. Sel. Top. Quantum Electron.12(1), 3–14 (2006). [CrossRef]
  25. A. Serpengüzel, S. Arnold, and G. Griffel, “Excitation of resonances of microspheres on an optical fiber,” Opt. Lett.20(7), 654–656 (1995). [CrossRef] [PubMed]
  26. Y. W. Song, S. Yamashita, C. S. Goh, and S. Y. Set, “Carbon nanotube mode lockers with enhanced nonlinearity via evanescent field interaction in D-shaped fibers,” Opt. Lett.32(2), 148–150 (2007). [CrossRef] [PubMed]
  27. Y. J. Zhang, F. F. Zhong, W. B. He, Y. Zhang, Y. Wang, J. Xu, and J. L. Ju, “A long uniform taper applied to an all-fiber Tm3+ doped double-clad fiber laser,” Laser Phys.20(11), 1978–1980 (2010). [CrossRef]
  28. A. Diez, M. V. Andres, and D. O. Culverhouse, “In-line polarizers and filters made of metal-coated tapered fibers: Resonant excitation of hybrid plasma modes,” IEEE Photon. Technol. Lett.10(6), 833–835 (1998). [CrossRef]
  29. S. G. Lee, J. P. Sokoloff, B. P. McGinnis, and H. Sasabe, “Fabrication of a side-polished fiber polarizer with a biref ringent polymer overlay,” Opt. Lett.22(9), 606–608 (1997). [CrossRef] [PubMed]
  30. M. Davanço and K. Srinivasan, “Efficient spectroscopy of single embedded emitters using optical fiber taper waveguides,” Opt. Express17(13), 10542–10563 (2009). [CrossRef] [PubMed]
  31. M. T. Rakher, R. Bose, C. W. Wong, and K. Srinivasan, “Fiber-based cryogenic and time-resolved spectroscopy of PbS quantum dots,” Opt. Express19(3), 1786–1793 (2011). [CrossRef] [PubMed]
  32. L. Su, T. H. Lee, and S. R. Elliott, “Evanescent-wave excitation of surface-enhanced Raman scattering substrates by an optical-fiber taper,” Opt. Lett.34(17), 2685–2687 (2009). [CrossRef] [PubMed]
  33. M. H. Cordaro, D. L. Rode, T. S. Barry, and R. R. Krchnavek, “Precision fabrication of D-shaped single-mode optical fibers by in situ monitoring,” J. Lightwave Technol.12(9), 1524–1531 (1994). [CrossRef]
  34. J. M. Kvavle, S. M. Schultz, and R. H. Selfridge, “Low loss elliptical core D-fiber to PANDA fiber fusion splicing,” Opt. Express16(18), 13552–13559 (2008). [CrossRef] [PubMed]
  35. T. L. Lowder, B. R. Tebbs, R. H. Selfridge, S. M. Schultz, K. H. Smith, and T. D. Monte, “Polarization analysis of surface-relief D-fiber Bragg gratings,” Appl. Opt.46(13), 2387–2393 (2007). [CrossRef] [PubMed]
  36. F. Bilodeau, K. O. Hill, S. Faucher, and D. C. Johnson, “Low-loss highly overcoupled fused couplers: Fabrication and sensitivity to external pressure,” J. Lightwave Technol.6(10), 1476–1482 (1988). [CrossRef]
  37. Y. Takeuchi and J. Noda, “Novel fiber coupler tapering process using a microheater,” IEEE Photon. Technol. Lett.4(5), 465–467 (1992). [CrossRef]
  38. D. Donlagic, “In-line higher order mode filters based on long highly uniform fiber tapers,” J. Lightwave Technol.24(9), 3532–3539 (2006). [CrossRef]
  39. H. S. Haddock, P. M. Shankar, and R. Mutharasan, “Fabrication of biconical tapered optical fibers using hydrofluoric acid,” Mat. Sci. Eng. B-Solid97(1), 87–93 (2003). [CrossRef]
  40. J. P. Laine, B. E. Little, and H. A. Haus, “Etch-eroded fiber coupler for whispering-gallery-mode excitation in high-Q silica microspheres,” IEEE Photon. Technol. Lett.11(11), 1429–1430 (1999). [CrossRef]
  41. E. J. Zhang, W. D. Sacher, and J. K. S. Poon, “Hydrofluoric acid flow etching of low-loss subwavelength-diameter biconical fiber tapers,” Opt. Express18(21), 22593–22598 (2010). [CrossRef] [PubMed]
  42. J. D. Love, W. M. Henry, and W. J. Stewart, “Tapered single-mode fibres and devices. I. Adiabaticity criteria,” IEEE Proc.-J138(5), 343–354 (1991).
  43. L. M. Xiao, M. D. W. Grogan, S. G. Leon-Saval, R. Williams, R. England, W. J. Wadsworth, and T. A. Birks, “Tapered fibers embedded in silica aerogel,” Opt. Lett.34(18), 2724–2726 (2009). [CrossRef] [PubMed]
  44. G. Brambilla, F. Xu, P. Horak, Y. Jung, F. Koizumi, N. P. Sessions, E. Koukharenko, X. Feng, G. S. Murugan, J. S. Wilkinson, and D. J. Richardson, “Optical fiber nanowires and microwires: fabrication and applications,” Adv. Opt. Photon.1(1), 107–161 (2009). [CrossRef]
  45. S. Pevec, E. Cibula, B. Lenardic, and D. Donlagic, “Micromachining of Optical Fibers Using Selective Etching Based on Phosphorus Pentoxide Doping,” IEEE Photon. J3(4), 627–632 (2011). [CrossRef]
  46. D. Donlagic, “All-fiber micromachined microcell,” Opt. Lett.36(16), 3148–3150 (2011). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited