OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 25 — Dec. 3, 2012
  • pp: 27896–27901

SNAP: Fabrication of long coupled microresonator chains with sub-angstrom precision

M. Sumetsky and Y. Dulashko  »View Author Affiliations

Optics Express, Vol. 20, Issue 25, pp. 27896-27901 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (3422 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Based on the recently-introduced Surface Nanoscale Axial Photonics (SNAP) platform, we demonstrate a chain of 30 coupled SNAP microresonators spaced by 50 micron along an optical fiber, which is fabricated with the precision of 0.7 angstrom and a standard deviation of 0.12 angstrom in effective microresonator radius. To the best of our knowledge, this result surpasses those achieved in other super-low-loss photonic technologies developed to date by two orders of magnitude. The chain exhibits bandgaps in both the discrete and continuous spectrum in excellent agreement with theory. The developed method enables robust fabrication of SNAP devices with sub-angstrom precision.

© 2012 OSA

OCIS Codes
(060.2340) Fiber optics and optical communications : Fiber optics components
(230.3990) Optical devices : Micro-optical devices
(140.3945) Lasers and laser optics : Microcavities

ToC Category:
Integrated Optics

Original Manuscript: October 25, 2012
Revised Manuscript: November 17, 2012
Manuscript Accepted: November 20, 2012
Published: November 29, 2012

M. Sumetsky and Y. Dulashko, "SNAP: Fabrication of long coupled microresonator chains with sub-angstrom precision," Opt. Express 20, 27896-27901 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. F. N. Xia, L. Sekaric, and Y. Vlasov, “Ultracompact optical buffers on a silicon chip,” Nat. Photonics1(1), 65–71 (2007). [CrossRef]
  2. M. Notomi, E. Kuramochi, and T. Tanabe, “Large-scale arrays of ultrahigh-Q coupled nanocavities,” Nat. Photonics2(12), 741–747 (2008). [CrossRef]
  3. W. Bogaerts, S. K. Selvaraja, P. Dumon, J. Brouckaert, K. De Vos, D. Van Thourhout, and R. Baets, “Silicon-on-insulator spectral filters fabricated with CMOS technology,” IEEE J. Sel. Top. Quantum Electron.16(1), 33–44 (2010). [CrossRef]
  4. A. Melloni, A. Canciamilla, C. Ferrari, F. Morichetti, L. O’Faolain, T. F. Krauss, R. De La Rue, A. Samarelli, and M. Sorel, “Tunable delay lines in silicon photonics: coupled resonators and photonic crystals, a comparison,” IEEE Photon. J.2(2), 181–194 (2010). [CrossRef]
  5. M. L. Cooper, G. Gupta, M. A. Schneider, W. M. J. Green, S. Assefa, F. Xia, Y. A. Vlasov, and S. Mookherjea, “Statistics of light transport in 235-ring silicon coupled-resonator optical waveguides,” Opt. Express18(25), 26505–26516 (2010). [CrossRef] [PubMed]
  6. A. Canciamilla, F. Morichetti, S. Grillanda, P. Velha, M. Sorel, V. Singh, A. Agarwal, L. C. Kimerling, and A. Melloni, “Photo-induced trimming of chalcogenide-assisted silicon waveguides,” Opt. Express20(14), 15807–15817 (2012). [CrossRef] [PubMed]
  7. S. Prorok, A. Yu. Petrov, M. Eich, J. Luo, and A. K.-Y. Jen, “Trimming of high-Q-factor silicon ring resonators by electron beam bleaching,” Opt. Lett.37(15), 3114–3116 (2012). [CrossRef] [PubMed]
  8. M. Sumetsky, “Localization of light in an optical fiber with nanoscale radius variation,” in CLEO/Europe and EQEC 2011 Conference Digest, postdeadline paper PDA_8.
  9. M. Sumetsky and J. M. Fini, “Surface nanoscale axial photonics,” Opt. Express19(27), 26470–26485 (2011). [CrossRef] [PubMed]
  10. M. Sumetsky, D. J. DiGiovanni, Y. Dulashko, J. M. Fini, X. Liu, E. M. Monberg, and T. F. Taunay, “Surface nanoscale axial photonics: robust fabrication of high-quality-factor microresonators,” Opt. Lett.36(24), 4824–4826 (2011). [CrossRef] [PubMed]
  11. M. Sumetsky, K. Abedin, D. J. DiGiovanni, Y. Dulashko, J. M. Fini, and E. M. Monberg, “Coupled high Q-factor surface nanoscale axial photonics (SNAP) microresonators,” Opt. Lett.37(6), 990–992 (2012). [CrossRef] [PubMed]
  12. M. Sumetsky, D. J. DiGiovanni, Y. Dulashko, X. Liu, E. M. Monberg, and T. F. Taunay, “Photo-induced SNAP: fabrication, trimming, and tuning of microresonator chains,” Opt. Express20(10), 10684–10691 (2012). [CrossRef] [PubMed]
  13. M. Sumetsky, “Theory of SNAP devices: basic equations and comparison with the experiment,” Opt. Express20(20), 22537–22554 (2012). [CrossRef] [PubMed]
  14. A. B. Matsko and V. S. Ilchenko, “Optical resonators with whispering-gallery modes—part I: Basics,” IEEE J. Sel. Top. Quantum Electron.12(1), 3–14 (2006). [CrossRef]
  15. M. Sumetsky, P. I. Reyes, P. S. Westbrook, N. M. Litchinitser, B. J. Eggleton, Y. Li, R. Deshmukh, and C. Soccolich, “Group-delay ripple correction in chirped fiber Bragg gratings,” Opt. Lett.28(10), 777–779 (2003). [CrossRef] [PubMed]
  16. F. Luan, E. Magi, T. Gong, I. Kabakova, and B. J. Eggleton, “Photoinduced whispering gallery mode microcavity resonator in a chalcogenide microfiber,” Opt. Lett.36(24), 4761–4763 (2011). [CrossRef] [PubMed]
  17. A. D. Yablon, M. F. Yan, P. Wisk, F. V. DiMarcello, J. W. Fleming, W. A. Reed, E. M. Monberg, D. J. DiGiovanni, J. Jasapara, and M. E. Lines, “Refractive index perturbations in optical fibers resulting from frozen-in viscoelasticity,” Appl. Phys. Lett.84(1), 19–21 (2004). [CrossRef]
  18. T. A. Birks, J. C. Knight, and T. E. Dimmick, “High-resolution measurement of the fiber diameter variations using whispering gallery modes and no optical alignment,” IEEE Photon. Technol. Lett.12(2), 182–183 (2000). [CrossRef]
  19. M. Sumetsky and Y. Dulashko, “Radius variation of optical fibers with angstrom accuracy,” Opt. Lett.35(23), 4006–4008 (2010). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited