OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 26 — Dec. 10, 2012
  • pp: B315–B321

1.3 μm InAs/GaAs quantum dot lasers on Si rib structures with current injection across direct-bonded GaAs/Si heterointerfaces

Katsuaki Tanabe, Katsuyuki Watanabe, and Yasuhiko Arakawa  »View Author Affiliations


Optics Express, Vol. 20, Issue 26, pp. B315-B321 (2012)
http://dx.doi.org/10.1364/OE.20.00B315


View Full Text Article

Enhanced HTML    Acrobat PDF (1171 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

An InAs/GaAs quantum dot laser on a Si rib structure has been demonstrated. The double heterostructure laser structure grown on a GaAs substrate is layer-transferred onto a patterned Si substrate by GaAs/Si direct wafer bonding without oxide or metal mediation. This Fabry-Perot laser operates with current injection through the GaAs/Si rib interface and exhibits InAs quantum dot ground state lasing at 1.28 μm at room temperature, with a threshold current density of 480 A cm−2.

© 2012 OSA

OCIS Codes
(040.6040) Detectors : Silicon
(230.5590) Optical devices : Quantum-well, -wire and -dot devices
(250.5300) Optoelectronics : Photonic integrated circuits
(250.5960) Optoelectronics : Semiconductor lasers

ToC Category:
Waveguide and Optoelectronic Devices

History
Original Manuscript: October 1, 2012
Revised Manuscript: October 30, 2012
Manuscript Accepted: October 30, 2012
Published: November 29, 2012

Virtual Issues
European Conference on Optical Communication 2012 (2012) Optics Express

Citation
Katsuaki Tanabe, Katsuyuki Watanabe, and Yasuhiko Arakawa, "1.3 μm InAs/GaAs quantum dot lasers on Si rib structures with current injection across direct-bonded GaAs/Si heterointerfaces," Opt. Express 20, B315-B321 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-26-B315


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. A. B. Miller, “Rationale and challenges for optical interconnects to electric chips,” Proc. IEEE88(6), 728–749 (2000). [CrossRef]
  2. Y. Urino, T. Shimizu, M. Okano, N. Hatori, M. Ishizaka, T. Yamamoto, T. Baba, T. Akagawa, S. Akiyama, T. Usuki, D. Okamoto, M. Miura, M. Noguchi, J. Fujikata, D. Shimura, H. Okayama, T. Tsuchizawa, T. Watanabe, K. Yamada, S. Itabashi, E. Saito, T. Nakamura, and Y. Arakawa, “First demonstration of high density optical interconnects integrated with lasers, optical modulators, and photodetectors on single silicon substrate,” Opt. Express19(26), B159–B165 (2011). [CrossRef] [PubMed]
  3. Y. Arakawa and H. Sakaki, “Multidimensional quantum well laser and temperature dependence of its threshold current,” Appl. Phys. Lett.40(11), 939–941 (1982). [CrossRef]
  4. Z. Mi, J. Yang, P. Bhattacharya, and D. L. Huffaker, “Self-organised quantum dots as dislocation filters: the case of GaAs-based lasers on silicon,” Electron. Lett.42(2), 121–122 (2006). [CrossRef]
  5. T. Wang, H. Liu, A. Lee, F. Pozzi, and A. Seeds, “1.3-μm InAs/GaAs quantum-dot lasers monolithically grown on Si substrates,” Opt. Express19(12), 11381–11386 (2011). [CrossRef] [PubMed]
  6. H. Kroemer, T.-Y. Liu, and P. M. Petroff, “GaAs on Si and related systems: Problems and prospects,” J. Cryst. Growth95(1-4), 96–102 (1989). [CrossRef]
  7. M. Sugo, Y. Takanashi, M. M. Al-Jassim, and M. Yamaguchi, “Heteroepitaxial growth and characterization of InP on Si substrates,” J. Appl. Phys.68(2), 540–547 (1990). [CrossRef]
  8. Q.-Y. Tong and U. Gosele, Semiconductor wafer bonding: Science and technology (Wiley, New Jersey, 1998).
  9. K. Tanabe, K. Watanabe, and Y. Arakawa, “III-V/Si hybrid photonic devices by direct fusion bonding,” Nat. Sci. Rep.2, 349 (2012). [CrossRef] [PubMed]
  10. A. W. Fang, H. Park, O. Cohen, R. Jones, M. J. Paniccia, and J. E. Bowers, “Electrically pumped hybrid AlGaInAs-silicon evanescent laser,” Opt. Express14(20), 9203–9210 (2006). [CrossRef] [PubMed]
  11. J. Van Campenhout, P. Rojo Romeo, P. Regreny, C. Seassal, D. Van Thourhout, S. Verstuyft, L. Di Cioccio, J.-M. Fedeli, C. Lagahe, and R. Baets, “Electrically pumped InP-based microdisk lasers integrated with a nanophotonic silicon-on-insulator waveguide circuit,” Opt. Express15(11), 6744–6749 (2007). [CrossRef] [PubMed]
  12. S. Palit, J. Kirch, G. Tsvid, L. Mawst, T. Kuech, and N. M. Jokerst, “Low-threshold thin-film III-V lasers bonded to silicon with front and back side defined features,” Opt. Lett.34(18), 2802–2804 (2009). [CrossRef] [PubMed]
  13. K. Tanabe, S. Iwamoto, and Y. Arakawa, “Novel III-V/Si hybrid laser structures with current injection across conductive wafer-bonded heterointerfaces: A proposal and analysis,” IEICE Electron. Express8(8), 596–603 (2011). [CrossRef]
  14. T. Kageyama, K. Nishi, M. Yamaguchi, R. Machida, Y. Maeda, K. Takemasa, Y. Tanaka, T. Yamamoto, M. Sugawara, and Y. Arakawa, “Extremely high temperature (220 °C) continuous-wave operation of 1300-nm-range quantum-dot lasers,” in CLEO/Europe and EQEC 2011 Conference Digest (Optical Society of America), paper PDA_1 (2011).
  15. K. Tanabe, M. Nomura, D. Guimard, S. Iwamoto, and Y. Arakawa, “Room temperature continuous wave operation of InAs/GaAs quantum dot photonic crystal nanocavity laser on silicon substrate,” Opt. Express17(9), 7036–7042 (2009). [CrossRef] [PubMed]
  16. E. E. L. Friedrich, M. G. Oberg, B. Broberg, S. Nilsson, and S. Valette, “Hybrid integration of semiconductor lasers with Si-based single-mode ridge waveguides,” J. Lightwave Technol.10(3), 336–340 (1992). [CrossRef]
  17. K. Kato and Y. Tohmori, “PLC hybrid integration technology and its application to photonic components,” IEEE J. Sel. Top. Quantum Electron.6(1), 4–13 (2000). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited