OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 26 — Dec. 10, 2012
  • pp: B493–B500

Compact SOI-based polarization diversity wavelength de-multiplexer circuit using two symmetric AWGs

S. Pathak, M. Vanslembrouck, P. Dumon, D. Van Thourhout, and W. Bogaerts  »View Author Affiliations


Optics Express, Vol. 20, Issue 26, pp. B493-B500 (2012)
http://dx.doi.org/10.1364/OE.20.00B493


View Full Text Article

Enhanced HTML    Acrobat PDF (5614 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We demonstrate a compact 16-channel 200GHz polarization diversity wavelength de-multiplexer circuit using two silicon AWGs and 2D grating couplers. Estimated fiber to fiber loss is better than −15.0dB. Insertion loss and crosstalk induced by the AWGs are −2.6dB and 21.5dB, respectively. The maximum polarization dependent wavelength shift is 0.12nm. The polarization dependent loss varies between 0.06dB and 2.32dB over the 16 channels. The total circuit footprint is 1400 × 850μm2.

© 2012 OSA

OCIS Codes
(130.0130) Integrated optics : Integrated optics
(130.1750) Integrated optics : Components
(130.3120) Integrated optics : Integrated optics devices
(130.7408) Integrated optics : Wavelength filtering devices

ToC Category:
Waveguide and Optoelectronic Devices

History
Original Manuscript: October 1, 2012
Manuscript Accepted: November 11, 2012
Published: December 3, 2012

Virtual Issues
European Conference on Optical Communication 2012 (2012) Optics Express

Citation
S. Pathak, M. Vanslembrouck, P. Dumon, D. Van Thourhout, and W. Bogaerts, "Compact SOI-based polarization diversity wavelength de-multiplexer circuit using two symmetric AWGs," Opt. Express 20, B493-B500 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-26-B493


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. Smit and C. Van Dam, “PHASAR-based WDM-devices: principles, design and applications,” IEEE J. Sel. Top. Quantum Electron.2(2), 236–250 (1996). [CrossRef]
  2. W. Bogaerts, S. Selvaraja, P. Dumon, J. Brouckaert, K. De Vos, D. Van Thourhout, and R. Baets, “Silicon-on-insulator spectral filters fabricated with CMOS technology,” IEEE J. Selected Topics in Quantum Electron.16(1), 33–44 (2010). [CrossRef]
  3. A. Himeno, K. Kato, and T. Miya, “Silica-based planar lightwave circuits,” IEEE J. Selected Topics in Quantum Electron.4(6), 913–924 (1998). [CrossRef]
  4. M. Kohtoku, H. Sanjoh, S. Oku, Y. Kadota, Y. Yoshikuni, and Y. Shibata, “InP-based 64-channel arrayed waveguide grating with 50 GHz channel spacing and up to −20 dB crosstalk,” Electron. Lett.33, 1786–1787 (1997). [CrossRef]
  5. Q. Fang, T.Y. Liow, J. F. Song, K. W. Ang, M. B. Yu, G. Q. Lo, and D.L. Kwong, “WDM multi-channel silicon photonic receiver with 320 Gbps data transmission capability,” Opt. Express18(5), 5106–5113 (2010). [CrossRef] [PubMed]
  6. S. K. Selvaraja, W. Bogaerts, and D. Van Thourhout, “Loss reduction in silicon nanophotonic waveguide micro-bends through etch profile improvement,” Opt. Commun.284(8), 2141–2144 (2011). [CrossRef]
  7. C. Doerr, M. Zirngibl, C. Joyner, L. Stulz, and H. Presby, “Polarization diversity waveguide grating receiver with integrated optical preamplifiers,” IEEE Photon. Tech. Lett.9(1), 85–87 (1997). [CrossRef]
  8. T. Barwicz, M. R. Watts, M. A. Popović, P. T. Rakich, L. Socci, F. X. Kärtner, E. P. Ippen, and H. I. Smith,“Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics1(1), 57–60 (2007). [CrossRef]
  9. W. Bogaerts, D. Taillaert, P. Dumon, D. Van Thourhout, R. Baets, and E. Pluk, “A polarization-diversity wavelength duplexer circuit in silicon-on-insulator photonic wires,” Opt. Express15(4), 1567–1578 (2007). [CrossRef] [PubMed]
  10. D. Taillaert, F. Van Laere, M. Ayre, W. Bogaerts, D. Van Thourhout, P. Bienstman, and R. Baets, “Grating couplers for coupling between optical fibers and nanophotonic waveguides,” Japanese J. Appl. Phys.45(8A), 6071–6077 (2006). [CrossRef]
  11. M. Pu, L. Liu, H. Ou, K. Yvind, and J. r. M. Hvam, “Ultra-low-loss inverted taper coupler for silicon-on-insulator ridge waveguide,” Opt. Commun.283(19), 3678–3682 (2010). [CrossRef]
  12. W. Bogaerts, P. Dumon, D. V. Thourhout, D. Taillaert, P. Jaenen, J. Wouters, S. Beckx, V. Wiaux, and R. G. Baets, “Compact wavelength-selective functions in silicon-on-insulator photonic wires,” IEEE J. Sel. Top. Quantum Electron.12(6), 1394–1401 (2006). [CrossRef]
  13. D. Taillaert, H. Chong, and P. Borel, “A compact two-dimensional grating coupler used as a polarization splitter,” IEEE Photon. Tech. Lett.15(9), 1249–1251 (2003). [CrossRef]
  14. F. Van Laere, W. Bogaerts, P. Dumon, G. Roelkens, D. Van Thourhout, and R. Baets, “Focusing polarization diversity grating couplers in silicon-on-insulator,” J. Lightwave Tech.27(5), 612–618 (2009). [CrossRef]
  15. T. Fukazawa, F. Ohno, and T. Baba, “Very compact arrayed waveguide grating demultiplexer using Si photonic wire waveguides,” Japanese J. Appl. Phys.43(5B), L673–L675 (2004). [CrossRef]
  16. S. Pathak, E. Lambert, P. Dumon, D. Van Thourhout, and W. Bogaerts, “Compact SOI-based AWG with flattened spectral response using a MMI,” in IEEE International Conference on Group IV Photonics (Institute of Electrical and Electronics Engineers, London, 2011), pp. 45–47. [CrossRef]
  17. R. Halir, D. Vermeulen, and G. Roelkens, “Reducing polarization-dependent loss of silicon-on-insulator fiber to chip grating couplers,” IEEE Photon. Tech. Lett.22(6), 389–391 (2010). [CrossRef]
  18. S. Pathak, M. Vanslembrouck, P. Dumon, D. Van Thourhout, and W. Bogaerts, “Compact SOI-Based polarization diversity wavelength de-multiplexer circuit using two symmetric AWGs,” in European Conference and Exhibition on Optical Communication (Optical Society of America, Netherlands, 2012).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited