OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 26 — Dec. 10, 2012
  • pp: B624–B629

112-Gb/s monolithic PDM-QPSK modulator in silicon

Po Dong, Chongjin Xie, Long Chen, Lawrence L. Buhl, and Young-Kai Chen  »View Author Affiliations


Optics Express, Vol. 20, Issue 26, pp. B624-B629 (2012)
http://dx.doi.org/10.1364/OE.20.00B624


View Full Text Article

Enhanced HTML    Acrobat PDF (2627 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present a monolithic dual-polarization quadrature phase-shift keying (QPSK) modulator based on a silicon photonic integrated circuit (PIC). This PIC consists of four high-speed silicon modulators, a polarization rotator, and a polarization beam combiner. A 112-Gb/s polarization-division-multiplexed (PDM) QPSK modulation is successfully demonstrated.

© 2012 OSA

OCIS Codes
(060.1660) Fiber optics and optical communications : Coherent communications
(130.0250) Integrated optics : Optoelectronics
(250.5300) Optoelectronics : Photonic integrated circuits
(250.7360) Optoelectronics : Waveguide modulators

ToC Category:
Waveguide and Optoelectronic Devices

History
Original Manuscript: October 15, 2012
Revised Manuscript: November 5, 2012
Manuscript Accepted: November 5, 2012
Published: December 10, 2012

Virtual Issues
European Conference on Optical Communication 2012 (2012) Optics Express

Citation
Po Dong, Chongjin Xie, Long Chen, Lawrence L. Buhl, and Young-Kai Chen, "112-Gb/s monolithic PDM-QPSK modulator in silicon," Opt. Express 20, B624-B629 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-26-B624


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. P. J. Winzer and R. Essiambre, “Advanced optical modulation formats,” Proc. IEEE94(5), 952–985 (2006). [CrossRef]
  2. T. Okoshi and K. Kikuchi, Coherent optical fiber communications, Boston. MA, (Kluwer, 1998).
  3. E. Yamada, S. Kanazawa, A. Ohki, K. Watanabe, Y. Nasu, N. Kikuchi, Y. Shibata, R. Iga, and H. Ishii, “112-Gb/s InP DP-QPSK modulator integrated with a silica-PLC polarization multiplexing circuit,” in National Fiber Optic Engineers Conference (Optical Society of America, 2012), paper PDP5A.9.
  4. K. Prosyk, T. Brast, M. Gruner, M. Hamacher, D. Hoffmann, R. Millett, and K. Velthaus, “Tunable InP-based optical IQ modulator for 160 Gb/s,” in 37th European Conference and Exposition on Optical Communications (Optical Society of America, 2011), paper Th.13.A.5.
  5. P. Evans, M. Fisher, R. Malendevich, A. James, P. Studenkov, G. Goldfarb, T. Vallaitis, M. Kato, P. Samra, S. Corzine, E. Strzelecka, R. Salvatore, F. Sedgwick, M. Kuntz, V. Lal, D. Lambert, A. Dentai, D. Pavinski, J. Zhang, B. Behnia, J. Bostak, V. Dominic, A. Nilsson, B. Taylor, J. Rahn, S. Sanders, H. Sun, K.-T. Wu, J. Pleumeekers, R. Muthiah, M. Missey, R. Schneider, J. Stewart, M. Reffle, T. Butrie, and R. Nagarajan, C, Joyner, M. Ziari, F. Kish, and D. Welch, “Multi-channel coherent PM-QPSK InP transmitter photonic integrated circuit (PIC) operating at 112 Gb/s per wavelength,” in Optical Fiber Communication Conference (Optical Society of America, 2011), paper PDPC7.
  6. R. A. Soref, “The past, present and future of silicon photonics,” IEEE. J. Sel. Top. Quantum Electron.12(6), 1678–1687 (2006). [CrossRef]
  7. L. C. Kimerling, D. Ahn, A. B. Apsel, M. Beals, D. Carothers, Y.-K. Chen, T. Conway, D. M. Gill, M. Grove, C.-Y. Hong, M. Lipson, J. Liu, J. Michel, D. Pan, S. S. Patel, A. T. Pomerene, M. Rasras, D. K. Sparacin, K.-Y. Tu, A. E. White, and C. W. Wong, “Electronic–photonic integrated circuits on the CMOS platform,” Proc. SPIE6125, 6–15 (2006).
  8. H. Fukuda, K. Yamada, T. Tsuchizawa, T. Watanabe, H. Shinojima, and S. Itabashi, “Silicon photonic circuit with polarization diversity,” Opt. Express16(7), 4872–4880 (2008). [CrossRef] [PubMed]
  9. L. Chen, C. R. Doerr, and Y.-K. Chen, “Compact polarization rotator on silicon for polarization-diversified circuits,” Opt. Lett.36(4), 469–471 (2011). [CrossRef] [PubMed]
  10. C. R. Doerr, L. L. Buhl, Y. Baeyens, R. Aroca, S. Chandrasekhar, X. Liu, L. Chen, and Y.-K. Chen, “Packaged monolithic silicon 112-Gb/s coherent receiver,” IEEE Photon. Technol. Lett.23(12), 762–764 (2011). [CrossRef]
  11. Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature435(7040), 325–327 (2005). [CrossRef] [PubMed]
  12. P. Dong, S. Liao, D. Feng, H. Liang, D. Zheng, R. Shafiiha, C.-C. Kung, W. Qian, G. Li, X. Zheng, A. V. Krishnamoorthy, and M. Asghari, “Low Vpp, ultralow-energy, compact, high-speed silicon electro-optic modulator,” Opt. Express17(25), 22484–22490 (2009). [CrossRef] [PubMed]
  13. A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature427(6975), 615–618 (2004). [CrossRef] [PubMed]
  14. A. Liu, L. Liao, D. Rubin, H. Nguyen, B. Ciftcioglu, Y. Chetrit, N. Izhaky, and M. Paniccia, “High-speed optical modulation based on carrier depletion in a silicon waveguide,” Opt. Express15(2), 660–668 (2007). [CrossRef] [PubMed]
  15. T.-Y. Liow, K.-W. Ang, Q. Fang, J.-F. Song, Y.-Z. Xiong, M.-B. Yu, G.-Q. Lo, and D.-L. Kwong, “Silicon modulators and germanium photodetectors on SOI: monolithic integration, compatibility, and performance optimization,” IEEE J. Sel. Top. Quantum Electron.16(1), 307–315 (2010). [CrossRef]
  16. N.-N. Feng, S. Liao, D. Feng, P. Dong, D. Zheng, H. Liang, R. Shafiiha, G. Li, J. E. Cunningham, A. V. Krishnamoorthy, and M. Asghari, “High speed carrier-depletion modulators with 1.4V-cm VπL integrated on 0.25μm silicon-on-insulator waveguides,” Opt. Express18(8), 7994–7999 (2010). [CrossRef] [PubMed]
  17. D. J. Thomson, F. Y. Gardes, Y. Hu, G. Mashanovich, M. Fournier, P. Grosse, J.-M. Fedeli, and G. T. Reed, “High contrast 40Gbit/s optical modulation in silicon,” Opt. Express19(12), 11507–11516 (2011). [CrossRef] [PubMed]
  18. L. Chen, C. Doerr, P. Dong, and Y.-K. Chen, “Monolithic silicon chip with 10 modulator channels at 25 Gbps and 100-GHz spacing,” in 37th European Conference and Exposition on Optical Communications, (Optical Society of America, 2011), paper Th.13.A.1.
  19. D. Thomson, F. Gardes, J. Fedeli, S. Zlatanovic, Y. Hu, B. Kuo, E. Myslivets, N. Alic, S. R. G. Mashanovich, and G. Reed, “50Gbit/s silicon optical modulator,” IEEE Photon. Technol. Lett.24, 234–236 (2012).
  20. P. Dong, L. Chen, and Y.-K. Chen, “High-speed low-voltage single-drive push-pull silicon Mach-Zehnder modulators,” Opt. Express20(6), 6163–6169 (2012). [CrossRef] [PubMed]
  21. P. Dong, L. Chen, C. Xie, L. L. Buhl, and Y.-K. Chen, “50-Gb/s silicon quadrature phase-shift keying modulator,” Opt. Express20(19), 21181–21186 (2012). [CrossRef] [PubMed]
  22. P. Dong, C. Xie, L. Chen, N. K. Fontaine, and Y.-K. Chen, “Experimental demonstration of microring quadrature phase-shift keying modulators,” Opt. Lett.37(7), 1178–1180 (2012). [CrossRef] [PubMed]
  23. S. J. Savory, “Digital coherent optical receivers: algorithms and subsystems,” IEEE J. Sel. Top. Quantum Electron.16(5), 1164–1179 (2010). [CrossRef]
  24. A. J. Viterbi and A. M. Viterbi, “Nonlinear estimation of PSK-modulated carrier phase with application to burst digital transmission,” IEEE Trans. Inf. Theory29(4), 543–551 (1983). [CrossRef]
  25. C. Xie, “Polarization-dependent loss induced penalties in PDM-QPSK coherent optical communication systems,” in Optical Fiber Communication Conference (Optical Society of America, 2010), paper OWE6.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited