OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 27 — Dec. 17, 2012
  • pp: 28009–28016

Demonstration of electrooptic modulation at 2165nm using a silicon Mach-Zehnder interferometer

Mackenzie A. Van Camp, Solomon Assefa, Douglas M. Gill, Tymon Barwicz, Steven M. Shank, Philip M. Rice, Teya Topuria, and William M. J. Green  »View Author Affiliations


Optics Express, Vol. 20, Issue 27, pp. 28009-28016 (2012)
http://dx.doi.org/10.1364/OE.20.028009


View Full Text Article

Enhanced HTML    Acrobat PDF (2370 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We demonstrate electrooptic modulation at a wavelength of 2165nm, using a free-carrier injection-based silicon Mach-Zehnder modulator. The modulator has a Vπ∙L figure of merit of 0.12V∙mm, and an extinction ratio of −23dB. Optical modulation experiments are performed at bitrates up to 3Gbps. Our results illustrate that optical modulator design methodologies previously developed for telecom-band devices can be successfully applied to produce high-performance devices for a silicon nanophotonic mid-infrared integrated circuit platform.

© 2012 OSA

OCIS Codes
(250.5300) Optoelectronics : Photonic integrated circuits
(250.7360) Optoelectronics : Waveguide modulators

ToC Category:
Optoelectronics

History
Original Manuscript: September 17, 2012
Revised Manuscript: November 19, 2012
Manuscript Accepted: November 19, 2012
Published: December 3, 2012

Citation
Mackenzie A. Van Camp, Solomon Assefa, Douglas M. Gill, Tymon Barwicz, Steven M. Shank, Philip M. Rice, Teya Topuria, and William M. J. Green, "Demonstration of electrooptic modulation at 2165nm using a silicon Mach-Zehnder interferometer," Opt. Express 20, 28009-28016 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-27-28009


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. Soref, “Mid-infrared photonics in silicon and germanium,” Nat. Photonics4(8), 495–497 (2010). [CrossRef]
  2. R. Soref, “Silicon waveguided components for the long-wave infrared region,” J. Opt. A – Pure Appl. Op. 8(10), 840–848 (2006).
  3. R. Soref, “Towards silicon-based longwave integrated optoelectronics (LIO),” SPIE Proc.6898, 689809, 689809-13 (2008). [CrossRef]
  4. G. Z. Mashanovich, M. M. Milošević, M. Nedeljkovic, N. Owens, B. Xiong, E. J. Teo, and Y. Hu, “Low loss silicon waveguides for the mid-infrared,” Opt. Express19(8), 7112–7119 (2011). [CrossRef] [PubMed]
  5. M. M. Milošević, P. S. Matavulj, P. Y. Yang, A. Bagolini, and G. Z. Mashanovich, “Rib waveguides for mid-infrared silicon photonics,” J. Opt. Soc. Am. B26(9), 1760–1766 (2009). [CrossRef]
  6. T. Baehr-Jones, A. Spott, R. Ilic, A. Spott, B. Penkov, W. Asher, and M. Hochberg, “Silicon-on-sapphire integrated waveguides for the mid-infrared,” Opt. Express18(12), 12127–12135 (2010). [CrossRef] [PubMed]
  7. A. Spott, Y. Liu, T. Baehr-Jones, R. Ilic, and M. Hochberg, “Silicon waveguides and ring resonators at 5.5 μm,” Appl. Phys. Lett.97(21), 213501 (2010). [CrossRef]
  8. F. Li, S. D. Jackson, C. Grillet, E. Magi, D. Hudson, S. J. Madden, Y. Moghe, C. O’Brien, A. Read, S. G. Duvall, P. Atanackovic, B. J. Eggleton, and D. J. Moss, “Low propagation loss silicon-on-sapphire waveguides for the mid-infrared,” Opt. Express19(16), 15212–15220 (2011). [CrossRef] [PubMed]
  9. P. Y. Yang, S. Stankovic, J. Crnjanski, E. J. Teo, D. Thomson, A. A. Bettiol, M. B. H. Breese, W. Headley, C. Giusca, G. T. Reed, and G. Z. Mashanovich, “Silicon photonic waveguides for mid- and long-wave infrared region,” J. Mater. Sci.20, S159–S163 (2009).
  10. R. Shankar, R. Leijssen, I. Bulu, and M. Lončar, “Mid-infrared photonic crystal cavities in silicon,” Opt. Express19(6), 5579–5586 (2011). [CrossRef] [PubMed]
  11. B. Kuyken, X. Liu, R. M. Osgood, R. Baets, G. Roelkens, and W. M. J. Green, “Mid-infrared to telecom-band supercontinuum generation in highly nonlinear silicon-on-insulator wire waveguides,” Opt. Express19(21), 20172–20181 (2011). [CrossRef] [PubMed]
  12. R. K. W. Lau, M. Ménard, Y. Okawachi, M. A. Foster, A. C. Turner-Foster, R. Salem, M. Lipson, and A. L. Gaeta, “Continuous-wave mid-infrared frequency conversion in silicon nanowaveguides,” Opt. Lett.36(7), 1263–1265 (2011). [CrossRef] [PubMed]
  13. S. Zlatanovic, J. S. Park, S. Moro, J. M. C. Boggio, I. B. Divliansky, N. Alic, S. Mookherjea, and S. Radic, “Mid-infrared wavelength conversion in silicon waveguides using ultracompact telecom-band-derived pump source,” Nat. Photonics4(8), 561–564 (2010). [CrossRef]
  14. X. Liu, R. M. Osgood, Y. A. Vlasov, and W. M. J. Green, “Mid-infrared optical parametric amplifier using silicon nanophotonic waveguides,” Nat. Photonics4(8), 557–560 (2010). [CrossRef]
  15. B. Kuyken, X. Liu, G. Roelkens, R. Baets, R. M. Osgood, and W. M. J. Green, “50 dB parametric on-chip gain in silicon photonic wires,” Opt. Lett.36(22), 4401–4403 (2011). [CrossRef] [PubMed]
  16. N. Hattasan, A. Gassenq, L. Cerutti, J.-B. Rodriguez, E. Tournie, and G. Roelkens, “Heterogeneous integration of GaInAsSb p-i-n photodiodes on a silicon-on-insulator waveguide circuit,” IEEE Photon. Technol. Lett.23(23), 1760–1762 (2011). [CrossRef]
  17. F. Gholami, S. Zlatanovic, E. Myslivets, S. Moro, B. P. Kuo, C. Brès, A. O. J. Wiberg, N. Alic, and S. Radic, “10Gbps parametric short-wave infrared transmitter,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2011), paper OThC6.
  18. N. Ophir, R. K. W. Lau, M. Menard, R. Salem, K. Padmaraju, Y. Okawachi, M. Lipson, A. L. Gaeta, and K. Bergman, “First demonstration of a 10-Gb/s RZ end-to-end four-wave-mixing based link at 1884 nm using silicon nanowaveguides,” IEEE Photon. Technol. Lett.24(4), 276–278 (2012). [CrossRef]
  19. R. A. Soref and B. R. Bennett, “Electrooptical effects in silicon,” IEEE J. Quantum Electron.23(1), 123–129 (1987). [CrossRef]
  20. W. M. J. Green, M. J. Rooks, L. Sekaric, and Y. A. Vlasov, “Ultra-compact, low RF power, 10 Gb/s silicon Mach-Zehnder modulator,” Opt. Express15(25), 17106–17113 (2007). [CrossRef] [PubMed]
  21. Q. Xu, S. Manipatruni, B. Schmidt, J. Shakya, and M. Lipson, “12.5 Gbit/s carrier-injection-based silicon micro-ring silicon modulators,” Opt. Express15(2), 430–436 (2007). [CrossRef] [PubMed]
  22. D. J. Thomson, F. Y. Gardes, J.-M. Fedeli, S. Zlatanovic, Y. Hu, B. P. P. Kuo, E. Myslivets, N. Alic, S. Radic, G. Z. Mashanovich, and G. T. Reed, “50-Gb/s silicon optical modulator,” IEEE Photon. Technol. Lett.24(4), 234–236 (2012). [CrossRef]
  23. D. J. Thomson, F. Y. Gardes, Y. Hu, G. Mashanovich, M. Fournier, P. Grosse, J.-M. Fedeli, and G. T. Reed, “High contrast 40Gbit/s optical modulation in silicon,” Opt. Express19(12), 11507–11516 (2011). [CrossRef] [PubMed]
  24. A. Brimont, D. J. Thomson, P. Sanchis, J. Herrera, F. Y. Gardes, J. M. Fedeli, G. T. Reed, and J. Martí, “High speed silicon electro-optical modulators enhanced via slow light propagation,” Opt. Express19(21), 20876–20885 (2011). [CrossRef] [PubMed]
  25. J. C. Rosenberg, W. M. J. Green, S. Assefa, D. M. Gill, T. Barwicz, M. Yang, S. M. Shank, and Y. A. Vlasov, “A 25 Gbps silicon microring modulator based on an interleaved junction,” Opt. Express20(24), 26411–26423 (2012). [CrossRef]
  26. X. Xiao, X. Li, H. Xu, Y. Hu, K. Xiong, Z. Li, T. Chu, J. Yu, and Y. Yu, “44-Gb/s silicon microring modulators based on zigzag PN junctions,” IEEE Photon. Technol. Lett.24(19), 1712–1714 (2012). [CrossRef]
  27. H. Yu, M. Pantouvaki, J. Van Campenhout, D. Korn, K. Komorowska, P. Dumon, Y. Li, P. Verheyen, P. Absil, L. Alloatti, D. Hillerkuss, J. Leuthold, R. Baets, and W. Bogaerts, “Performance tradeoff between lateral and interdigitated doping patterns for high speed carrier-depletion based silicon modulators,” Opt. Express20(12), 12926–12938 (2012). [CrossRef] [PubMed]
  28. T. Baehr-Jones, R. Ding, Y. Liu, A. Ayazi, T. Pinguet, N. C. Harris, M. Streshinsky, P. Lee, Y. Zhang, A. E.-J. Lim, T.-Y. Liow, S. H.-G. Teo, G.-Q. Lo, and M. Hochberg, “Ultralow drive voltage silicon traveling-wave modulator,” Opt. Express20(11), 12014–12020 (2012). [CrossRef] [PubMed]
  29. L. Liao, A. Liu, D. Rubin, J. Basak, Y. Chetrit, H. Nguyen, R. Cohen, N. Izhaky, and M. Paniccia, “40 Gbit/s silicon optical modulator for high speed applications,” Electron. Lett.43(22), 1196–1197 (2007). [CrossRef]
  30. M. Nedeljkovic, R. Soref, and G. Z. Mashanovich, “Free-carrier electro-refraction and electro-absorption modulation predictions for silicon over the 1-14μm infrared wavelength range,” IEEE Photon. J.3(6), 1171–1180 (2011). [CrossRef]
  31. S. Assefa, W. M. Green, A. Rylyakov, C. Schow, F. Horst, and Y. Vlasov, “CMOS integrated nanophotonics: enabling technology for exascale computing systems,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2011), paper OMM6.
  32. W. M. J. Green, S. Assefa, A. Rylyakov, C. Schow, F. Horst, and Y. A. Vlasov, “CMOS integrated silicon nanophotonics: enabling technology for exascale computational systems,” presented at SEMICON 2010, Chiba, Japan, 1–3 Dec. 2010.
  33. T. Pinguet, S. Gloeckner, G. Masini, A. Mekis, D. J. Lockwood, and L. Pavesi, Silicon Photonics II: Components and Integration (Springer, 2011), Chap. 8.
  34. D. Weidmann, T. Tsai, N. A. Macleod, and G. Wysocki, “Atmospheric observations of multiple molecular species using ultra-high-resolution external cavity quantum cascade laser heterodyne radiometry,” Opt. Lett.36(11), 1951–1953 (2011). [CrossRef] [PubMed]
  35. K. Namjou, C. B. Roller, and P. J. McCann, “The Breathmeter: A new laser device to analyze your health,” IEEE Circuits & Devices Magazine Sept/Oct, 22–28 (2006).
  36. F. Capasso, R. Paiella, R. Martini, R. Colombelli, C. Gmachl, T. L. Myers, M. S. Taubman, R. M. Williams, C. G. Bethea, K. Unterrainer, H. Y. Hwang, D. L. Sivco, A. Y. Cho, A. M. Sergent, H. C. Liu, and E. A. Whittaker, “Quantum cascade lasers: Ultrahigh-speed operation, optical wireless communication, narrow linewidth, and far-infrared emission,” IEEE J. Quantum Electron.38(6), 511–532 (2002). [CrossRef]
  37. J. Van Campenhout, W. M. J. Green, S. Assefa, and Y. A. Vlasov, “Integrated NiSi waveguide heaters for CMOS-compatible silicon thermo-optic devices,” Opt. Lett.35(7), 1013–1015 (2010). [CrossRef] [PubMed]
  38. J. Van Campenhout, W. M. J. Green, S. Assefa, and Y. A. Vlasov, “Low-power, 2 x 2 silicon electro-optic switch with 110-nm bandwidth for broadband reconfigurable optical networks,” Opt. Express17(26), 24020–24029 (2009). [CrossRef] [PubMed]
  39. J. Rosenberg, W. M. Green, A. Rylyakov, C. Schow, S. Assefa, B. G. Lee, C. Jahnes, and Y. Vlasov, “Ultra-low-voltage micro-ring modulator integrated with a CMOS feed-forward equalization driver,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2011), paper OWQ4.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited