OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 27 — Dec. 17, 2012
  • pp: 28082–28093

Transmission and time delay properties of an integrated system consisting of atomic vapor cladding on top of a micro ring resonator

Liron Stern and Uriel Levy  »View Author Affiliations

Optics Express, Vol. 20, Issue 27, pp. 28082-28093 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1403 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



In this paper we analyze the transmission and time delay properties of light propagating through a microring resonator (MRR) consisting of a solid core waveguide surrounded by an atomic vapor cladding. Using the atomic effective susceptibility of Rubidium we derive the complex transmission spectrum of the integrated system. We show, that when the system is under-coupled, the transmission can exceed the standalone MRR’s background transmission and is accompanied by enhanced positive time delay. It is shown that in this case the contrast of the atomic lines is greatly enhanced. This allows achieving high optical densities at short propagation length. Furthermore, owing to its features such as small footprint, high tunability, and high delay-transmission product, this system may become an attractive choice for chip scale manipulations of light.

© 2012 OSA

OCIS Codes
(130.3120) Integrated optics : Integrated optics devices
(230.5750) Optical devices : Resonators
(020.1335) Atomic and molecular physics : Atom optics

ToC Category:
Integrated Optics

Original Manuscript: September 14, 2012
Revised Manuscript: November 15, 2012
Manuscript Accepted: November 16, 2012
Published: December 4, 2012

Liron Stern and Uriel Levy, "Transmission and time delay properties of an integrated system consisting of atomic vapor cladding on top of a micro ring resonator," Opt. Express 20, 28082-28093 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. Vanier and C. Mandache, “The passive optically pumped Rb frequency standard: the laser approach,” Appl. Phys. B87(4), 565–593 (2007). [CrossRef]
  2. I. K. Kominis, T. W. Kornack, J. C. Allred, and M. V. Romalis, “A subfemtotesla multichannel atomic magnetometer,” Nature422(6932), 596–599 (2003). [CrossRef] [PubMed]
  3. M. M. Kash, V. A. Sautenkov, A. S. Zibrov, L. Hollberg, G. R. Welch, M. D. Lukin, Y. Rostovtsev, E. S. Fry, and M. O. Scully, “Ultraslow Group Velocity and Enhanced Nonlinear Optical Effects in a Coherently Driven Hot Atomic Gas,” Phys. Rev. Lett.82(26), 5229–5232 (1999). [CrossRef]
  4. A. M. Marino, R. C. Pooser, V. Boyer, and P. D. Lett, “Tunable delay of Einstein-Podolsky-Rosen entanglement,” Nature457(7231), 859–862 (2009). [CrossRef] [PubMed]
  5. S. Knappe, L. Liew, V. Shah, P. Schwindt, J. Moreland, L. Hollberg, and J. Kitching, “A microfabricated atomic clock,” Appl. Phys. Lett.85(9), 1460 (2004). [CrossRef]
  6. F. Benabid, F. Couny, J. C. Knight, T. A. Birks, and P. S. J. Russell, “Compact, stable and efficient all-fibre gas cells using hollow-core photonic crystal fibres,” Nature434(7032), 488–491 (2005). [CrossRef] [PubMed]
  7. W. Yang, D. B. Conkey, B. Wu, D. Yin, A. R. Hawkins, and H. Schmidt, “Atomic spectroscopy on a chip,” Nat. Photonics1(6), 331–335 (2007). [CrossRef]
  8. T. Baluktsian, C. Urban, T. Bublat, H. Giessen, R. Löw, and T. Pfau, “Fabrication method for microscopic vapor cells for alkali atoms,” Opt. Lett.35(12), 1950–1952 (2010). [CrossRef] [PubMed]
  9. A. Sargsyan, C. Leroy, Y. Pashayan-Leroy, R. Mirzoyan, A. Papoyan, and D. Sarkisyan, “High contrast D1 line electromagnetically induced transparency in nanometric-thin rubidium vapor cell,” Appl. Phys. B105(4), 767–774 (2011). [CrossRef]
  10. L. Stern, B. Desiatov, I. Goykhman, and U. Levy, “Evanescent light-matter Interactions in Atomic Cladding Wave Guides,” arXiv:1204.0393 (2012).
  11. S. M. Spillane, G. S. Pati, K. Salit, M. Hall, P. Kumar, R. G. Beausoleil, and M. S. Shahriar, “Observation of Nonlinear Optical Interactions of Ultralow Levels of Light in a Tapered Optical Nanofiber Embedded in a Hot Rubidium Vapor,” Phys. Rev. Lett.100(23), 233602 (2008). [CrossRef] [PubMed]
  12. S. M. Hendrickson, M. M. Lai, T. B. Pittman, and J. D. Franson, “Observation of Two-photon Absorption at Low Power Levels Using Tapered Optical Fibers in Rubidium Vapor,” Phys. Rev. Lett.105(17), 173602 (2010). [CrossRef] [PubMed]
  13. K. Saha, V. Venkataraman, P. Londero, and A. L. Gaeta, “Enhanced two-photon absorption in a hollow-core photonic-band-gap fiber,” Phys. Rev. A83(3), 033833 (2011). [CrossRef]
  14. K. Zhao and Z. Wu, “Regionally specific hyperfine polarization of Rb atoms in the vicinity (10^{−5}cm) of surfaces,” Phys. Rev. A71(1), 012902 (2005). [CrossRef]
  15. H. Wang, D. J. Goorskey, W. H. Burkett, and M. Xiao, “Cavity-linewidth narrowing by means of electromagnetically induced transparency,” Opt. Lett.25(23), 1732–1734 (2000). [CrossRef] [PubMed]
  16. J. Zhang, G. Hernandez, and Y. Zhu, “Slow light with cavity electromagnetically induced transparency,” Opt. Lett.33(1), 46–48 (2008). [CrossRef] [PubMed]
  17. J. Guo, J. Cooper, A. Gallagher, and M. Lewenstein, “Theory of selective reflection spectroscopy,” Opt. Commun.110(1-2), 197–208 (1994). [CrossRef]
  18. G. Nienhuis, F. Schuller, and M. Ducloy, “Nonlinear selective reflection from an atomic vapor at arbitrary incidence angle,” Phys. Rev. A38(10), 5197–5205 (1988). [CrossRef] [PubMed]
  19. R. Kondo, S. Tojo, T. Fujimoto, and M. Hasuo, “Shift and broadening in attenuated total reflection spectra of the hyperfine-structure-resolved D_{2} line of dense rubidium vapor,” Phys. Rev. A73(6), 062504 (2006). [CrossRef]
  20. J. Guo, J. Cooper, and A. Gallagher, “Selective reflection from a dense atomic vapor,” Phys. Rev. A53(2), 1130–1138 (1996). [CrossRef] [PubMed]
  21. D. A. Steck, “Rubidium 87 D Line Data,” http://steck.us/alkalidata , (unpublished)
  22. L. Weller, R. J. Bettles, P. Siddons, C. S. Adams, and I. G. Hughes, “Absolute absorption on the rubidium D1 line including resonant dipole–dipole interactions,” J. Phys. At. Mol. Opt. Phys.44(19), 195006 (2011). [CrossRef]
  23. P. Siddons, C. S. Adams, C. Ge, and I. G. Hughes, “Absolute absorption on rubidium D lines: comparison between theory and experiment,” J. Phys. At. Mol. Opt. Phys.41(15), 155004 (2008). [CrossRef]
  24. U. Levy, K. Campbell, A. Groisman, S. Mookherjea, and Y. Fainman, “On-chip microfluidic tuning of an optical microring resonator,” Appl. Phys. Lett.88(11), 111107 (2006). [CrossRef]
  25. J. Heebner, A. Vincent Wong, A. Schweinsberg, R. W. Boyd, and D. J. Jackson, “Optical transmission characteristics of fiber ring resonators,” IEEE J. Quantum Electron.40(6), 726–730 (2004). [CrossRef]
  26. R. M. Camacho, M. V. Pack, and J. C. Howell, “Low-distortion slow light using two absorption resonances,” Phys. Rev. A73(6), 063812 (2006). [CrossRef]
  27. L. Wang, “Causal “all-pass” filters and Kramers–Kronig relations,” Opt. Commun.213(1-3), 27–32 (2002). [CrossRef]
  28. G. Müller, M. Müller, A. Wicht, R.-H. Rinkleff, and K. Danzmann, “Optical resonator with steep internal dispersion,” Phys. Rev. A56(3), 2385–2389 (1997). [CrossRef]
  29. M. Soljacić, E. Lidorikis, L. V. Hau, and J. D. Joannopoulos, “Enhancement of microcavity lifetimes using highly dispersive materials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.71(2), 026602 (2005). [CrossRef] [PubMed]
  30. D. Goldring, U. Levy, and D. Mendlovic, “Highly dispersive micro-ring resonator based on one dimensional photonic crystal waveguide design and analysis,” Opt. Express15(6), 3156–3168 (2007). [CrossRef] [PubMed]
  31. D. Goldring, U. Levy, I. E. Dotan, A. Tsukernik, M. Oksman, I. Rubin, Y. David, and D. Mendlovic, “Experimental measurement of quality factor enhancement using slow light modes in one dimensional photonic crystal,” Opt. Express16(8), 5585–5595 (2008). [CrossRef] [PubMed]
  32. D. K. Sparacin, C. Y. Hong, L. C. Kimerling, J. Michel, J. P. Lock, and K. K. Gleason, “Trimming of microring resonators by photooxidation of a plasma-polymerized organosilane cladding material,” Opt. Lett.30(17), 2251–2253 (2005). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited