OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 27 — Dec. 17, 2012
  • pp: 28119–28124

High-quality LiNbO3 microdisk resonators by undercut etching and surface tension reshaping

Tzyy-Jiann Wang, Jheng-Yu He, Cheng-An Lee, and Huan Niu  »View Author Affiliations

Optics Express, Vol. 20, Issue 27, pp. 28119-28124 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (5595 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report ultra-smooth LiNbO3 microdisk resonators fabricated by selective ion implantation, chemical etching, and thermal treatment. The undercut microdisk structure is produced by chemically etching the buried lattice damage layer formed by selective ion implantation. By thermal treatment, surface tension smoothes and reshapes microdisk surface topography. The resonant characteristics of microdisk resonators are simulated by finite element method and are well consistent with the experimental results. The 20μm-diameter microdisk resonator has the FSR of 16.43nm and the Q factor of 2.60 × 104. The produced LiNbO3 microdisk resonators can be utilized in new microdisk applications with electro-optic and nonlinear-optic effects.

© 2012 OSA

OCIS Codes
(130.3730) Integrated optics : Lithium niobate
(230.3120) Optical devices : Integrated optics devices
(230.5750) Optical devices : Resonators

ToC Category:
Integrated Optics

Original Manuscript: October 10, 2012
Revised Manuscript: November 21, 2012
Manuscript Accepted: November 23, 2012
Published: December 4, 2012

Tzyy-Jiann Wang, Jheng-Yu He, Cheng-An Lee, and Huan Niu, "High-quality LiNbO3 microdisk resonators by undercut etching and surface tension reshaping," Opt. Express 20, 28119-28124 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. L. Zhou and A. W. Poon, “Silicon electro-optic modulators using p-i-n diodes embedded 10-micron-diameter microdisk resonators,” Opt. Express14(15), 6851–6857 (2006). [CrossRef] [PubMed]
  2. S. J. Choi, Z. Peng, Q. Yang, S. J. Choi, and P. D. Dapkus, “Tunable microdisk resonators vertically coupled to bus waveguides using epitaxial regrowth and wafer bonding techniques,” Appl. Phys. Lett.84(5), 651–653 (2004). [CrossRef]
  3. A. C. Tamboli1, E. D. Haberer, R. Sharma, K. H. Lee, S. Nakamura, and E. L. Hu, “Room-temperature continuous-wave lasing in GaN/InGaN microdisks,” Nat. Photonics1, 61–64 (2007).
  4. J. Renner, L. Worschech, A. Forchel, S. Mahapatra, and K. Brunner, “CdSe quantum dot microdisk laser,” Appl. Phys. Lett.89(23), 231104 (2006). [CrossRef]
  5. L. Stern, I. Goykhman, B. Desiatov, and U. Levy, “Frequency locked microdisk resonator for real time and precise monitoring of refractive index,” Opt. Lett.37(8), 1313–1315 (2012). [CrossRef] [PubMed]
  6. T. Grossmann, S. Schleede, M. Hauser, T. Beck, M. Thiel, G. von Freymann, T. Mappes, and H. Kalt, “Direct laser writing for active and passive high-Q polymer microdisks on silicon,” Opt. Express19(12), 11451–11456 (2011). [CrossRef] [PubMed]
  7. A. Guarino, G. Poberaj, D. Rezzonico, R. Degl’innocenti, and P. Günter, “Electro-optically tunable microring resonators in lithium niobate,” Nat. Photonics1(7), 407–410 (2007). [CrossRef]
  8. Y. S. Lee, G.-D. Kim, W.-J. Kim, S.-S. Lee, W.-G. Lee, and W. H. Steier, “Hybrid Si-LiNbO₃ microring electro-optically tunable resonators for active photonic devices,” Opt. Lett.36(7), 1119–1121 (2011). [CrossRef] [PubMed]
  9. T. A. Ramadan, M. Levy, and R. M. Osgood., “Electro-optic modulation in crystal-ion-sliced z-cut LiNbO3 thin films,” Appl. Phys. Lett.76(11), 1407–1409 (2000). [CrossRef]
  10. A. A. Savchenkov, V. S. Ilchenko, A. B. Matsko, and L. Maleki, “High-order tunable filters based on a chain of coupled crystalline whispering gallery mode resonators,” IEEE Photon. Technol. Lett.17(1), 136–138 (2005). [CrossRef]
  11. K. Sasagawa and M. Tsuchiya, “Lithium niobate disk sensor using photonic heterodyning,” Appl. Phys. Express2, 082201 (2009). [CrossRef]
  12. G. Nunzi Conti, S. Berneschi, F. Cosi, S. Pelli, S. Soria, G. C. Righini, M. Dispenza, and A. Secchi, “Planar coupling to high-Q lithium niobate disk resonators,” Opt. Express19(4), 3651–3656 (2011). [CrossRef] [PubMed]
  13. V. S. Ilchenko, A. A. Savchenkov, A. B. Matsko, and L. Maleki, “Nonlinear optics and crystalline whispering gallery mode cavities,” Phys. Rev. Lett.92(4), 043903 (2004). [CrossRef] [PubMed]
  14. J. U. Fürst, D. V. Strekalov, D. Elser, M. Lassen, U. L. Andersen, C. Marquardt, and G. Leuchs, “Naturally phase-matched second-harmonic generation in a whispering-gallery-mode resonator,” Phys. Rev. Lett.104(15), 153901 (2010). [CrossRef] [PubMed]
  15. K. Sasagawa and M. Tsuchiya, “Highly efficient third harmonic generation in a periodically poled MgO:LiNbO3 disk resonator,” Appl. Phys. Express2(12), 122401 (2009). [CrossRef]
  16. T.-J. Wang, Y.-H. Tsou, W.-C. Chang, and H. Niu, “Fabrication of three-dimensional crystalline microstructures by selective ion implantation and chemical etching,” Appl. Phys., A Mater. Sci. Process.102(2), 463–467 (2011). [CrossRef]
  17. C. Y. J. Ying, C. L. Sones, A. C. Peacock, F. Johann, E. Soergel, R. W. Eason, M. N. Zervas, and S. Mailis, “Ultra-smooth lithium niobate photonic micro-structures by surface tension reshaping,” Opt. Express18(11), 11508–11513 (2010). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited