OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 27 — Dec. 17, 2012
  • pp: 28125–28141

Pump and signal combiner for bi-directional pumping of all-fiber lasers and amplifiers

Thomas Theeg, Hakan Sayinc, Jörg Neumann, Ludger Overmeyer, and Dietmar Kracht  »View Author Affiliations


Optics Express, Vol. 20, Issue 27, pp. 28125-28141 (2012)
http://dx.doi.org/10.1364/OE.20.028125


View Full Text Article

Enhanced HTML    Acrobat PDF (1943 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We developed an all-fiber component with a signal feedthrough capable of combining up to 6 fiber-coupled multi-mode pump sources to a maximum pump power of 400 W at efficiencies in the range of 89 to 95%, providing the possibility of transmitting a high power signal in forward and in reverse direction. Hence, the fiber combiner can be implemented in almost any fiber laser or amplifier architecture. The complete optical design of the combiner was developed based on ray tracing simulations and confirmed by experimental results.

© 2012 OSA

OCIS Codes
(060.2320) Fiber optics and optical communications : Fiber optics amplifiers and oscillators
(060.2340) Fiber optics and optical communications : Fiber optics components

ToC Category:
Fiber Optics and Optical Communications

History
Original Manuscript: October 1, 2012
Revised Manuscript: November 15, 2012
Manuscript Accepted: November 16, 2012
Published: December 4, 2012

Citation
Thomas Theeg, Hakan Sayinc, Jörg Neumann, Ludger Overmeyer, and Dietmar Kracht, "Pump and signal combiner for bi-directional pumping of all-fiber lasers and amplifiers," Opt. Express 20, 28125-28141 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-27-28125


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. P. Machewirth, Q. Wang, B. Samson, K. Tankala, M. O'Connor, and M. Alam, “Current developments in high-power monolithic polarization maintaining fiber amplifiers for coherent beam combining applications,” Proc. SPIE6453, 64531F, 64531F-7 (2007). [CrossRef]
  2. C. Zeringue, C. Vergien, and I. Dajani, “Pump-limited, 203 W, single-frequency monolithic fiber amplifier based on laser gain competition,” Opt. Lett.36(5), 618–620 (2011). [CrossRef] [PubMed]
  3. D. J. DiGiovanni and A. J. Stentz, “Tapered fiber bundles for coupling light into and out of cladding-pumped fiber devices,” U.S. Patent 5864644 (1999).
  4. C. Headley, M. Fishteyn, A. D. Yablon, M. J. Andrejco, K. Brar, J. Mann, M. D. Mermelstein, and D. J. DiGiovanni, “Tapered fiber bundles for combining laser pumps (Invited Paper),” Proc. SPIE5709, 263–272 (2005). [CrossRef]
  5. A. Wetter, M. Faucher, M. Lovelady, and F. Séguin, “Tapered fused-bundle splitter capable of 1kW CW operation,” Proc. SPIE6453, 64530I, 64530I-10 (2007). [CrossRef]
  6. D. J. Ripin and L. Goldberg, “High efficiency side-coupling of light into optical fibres using imbedded v-grooves,” Electron. Lett.31(25), 2204–2205 (1995). [CrossRef]
  7. J. P. Koplow, S. W. Moore, and D. A. V. Kliner, “A new method for side pumping of double-clad fiber sources,” IEEE J. Quantum Electron.39(4), 529–540 (2003). [CrossRef]
  8. F. Hakimi and H. Hakimi, “A new side coupling method for double-clad fiber amplifiers,” Conf. Lasers and Electro-Optics, 116 (2001).
  9. A. B. Grudinin, D. N. Payne, P. W. Turner, L. J. A. Nilsson, M. N. Zervas, M. Ibsen, and M. K. Durkin, “Multi-fiber arrangements for high-power fiber lasers and amplifiers,” U.S. Patent 6826335, (2004).
  10. F. Gonthier, “Novel designs for pump and signal fiber combiners,” Proc. SPIE7580, 758019, 758019-6 (2010). [CrossRef]
  11. C. Jauregui, S. Böhme, G. Wenetiadis, J. Limpert, and A. Tünnermann, “Side-pump combiner for all-fiber monolithic fiber lasers and amplifiers,” J. Opt. Soc. Am. B27(5), 1011–1015 (2010). [CrossRef]
  12. V. P. Gapontsev and I. Samartsev, Coupling arrangement between a multi-mode light source and an optical fiber through an intermediate optical fiber length,” U.S. Patent 5999673 (1999).
  13. Y. Sintov, Y. Glick, T. Koplowitch, O. Katz, Y. Nafcha, Y. Shamir, and R. Lavi, “A novel side coupling technique for rugged all-fiber lasers and amplifiers,” Proc. SPIE6552, 65520R, 65520R-9 (2007). [CrossRef]
  14. F. Gonthier, M. Garneau, and N. Vachon, “Multimode fiber outer cladding coupler for multi-clad fibers,” US Patent 7933779 B2 (2011).
  15. T. Theeg, H. Sayinc, J. Neumann, and D. Kracht, “All-fiber counter-propagation pumped single frequency amplifier stage with 300 W output power,” IEEE Photon. Technol. Lett.24(20), 1864–1867 (2012). [CrossRef]
  16. C. T. Chang and D. C. Auth, “Radiation characteristics of a tapered cylindrical optical fiber,” J. Opt. Soc. Am.68(9), 1191–1196 (1978). [CrossRef]
  17. W. T. Welford, Aberrations of Optical Systems (IOP Publishing Ltd, 1986), Chap. 2, 4 and 5.
  18. Y. F. Li and J. W. Y. Lit, “Transmission properties of a multimode optical-fiber taper,” J. Opt. Soc. Am. A2(3), 462–468 (1985). [CrossRef]
  19. M. Kihara, M. Matsumoto, T. Haibara, and S. Tomita, “Characteristics of thermally expanded core fiber,” J. Lightwave Technol.14(10), 2209–2214 (1996). [CrossRef]
  20. M.-J. Li, X. Chen, A. Liu, S. Gray, J. Wang, D. T. Walton, and L. A. Zenteno, “Limit of Effective Area for Single-Mode Operation in Step-Index Large Mode Area Laser Fibers,” J. Lightwave Technol.27(15), 3010–3016 (2009). [CrossRef]
  21. P. Kwee, F. Seifert, B. Willke, and K. Danzmann, “Laser beam quality and pointing measurement with an optical resonator,” Rev. Sci. Instrum.78(7), 073103 (2007). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited