OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 27 — Dec. 17, 2012
  • pp: 28142–28152

Magnetic polarization in the optical absorption of metallic nanoparticles

A. Asenjo-Garcia, A. Manjavacas, V. Myroshnychenko, and F. J. García de Abajo  »View Author Affiliations

Optics Express, Vol. 20, Issue 27, pp. 28142-28152 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (2433 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We find remarkably strong absorption due to magnetic polarization in common colloidal and lithographic metallic nanoparticles. Our analysis is based upon a thorough examination of the dipolar electric and magnetic polarizabilities for representative combinations of nanoparticle composition, size, and morphology. We illustrate this concept by first discussing absorption in metallic spheres and then exploring ellipsoids, disks, and rings. Magnetic polarization reaches ∼ 90% of the total absorption in 100 nm disks and rings for wavelengths above 1 μm under co-linear electric and magnetic irradiation. Our results demonstrate that the magnetic contribution to absorption cannot be naively overlooked, as it can largely exceed the contribution of electric polarization.

© 2012 OSA

OCIS Codes
(240.6680) Optics at surfaces : Surface plasmons
(290.4020) Scattering : Mie theory
(250.5403) Optoelectronics : Plasmonics

ToC Category:
Optics at Surfaces

Original Manuscript: October 2, 2012
Revised Manuscript: November 8, 2012
Manuscript Accepted: November 12, 2012
Published: December 4, 2012

A. Asenjo-Garcia, A. Manjavacas, V. Myroshnychenko, and F. J. García de Abajo, "Magnetic polarization in the optical absorption of metallic nanoparticles," Opt. Express 20, 28142-28152 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge University Press, New York, 2006). [CrossRef]
  2. V. Myroshnychenko, J. Rodríguez-Fernández, I. Pastoriza-Santos, A. M. Funston, C. Novo, P. Mulvaney, L. M. Liz-Marzán, and F. J. García de Abajo, “Modelling the optical response of gold nanoparticles,” Chem. Soc. Rev.37, 1792–1805 (2008). [CrossRef] [PubMed]
  3. H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater.9, 205–213 (2010). [CrossRef] [PubMed]
  4. D. P. O’Neal, L. R. Hirsch, N. J. Halas, J. D. Payne, and J. L. West, “Photo-thermal tumor ablation in mice using near infrared-absorbing nanoparticles,” Cancer Lett.209, 171–176 (2004). [CrossRef]
  5. C. Loo, A. Lowery, N. J. Halas, J. L. West, and R. Drezek, “Inmunotargeted nanoshells for integrated cancer imaging and therapy,” Nano Lett.5, 709–711 (2005). [CrossRef] [PubMed]
  6. J. H. Lee, J. Jang, J. Choi, S. H. Moon, S. Noh, J. Kim, J. Kim, I. S. Kim, K. I. Park, and J. Cheon, “Exchange-coupled magnetic nanoparticles for efficient heat induction,” Nat. Nanotech.6, 418–422 (2011). [CrossRef]
  7. H. Huang, S. Delikanli, H. Zeng, D. M. Ferkey, and A. Pralle, “Remote control of ion channels and neurons through magnetic-field heating of nanoparticles,” Nat. Nanotech.5, 602–606 (2010). [CrossRef]
  8. M. S. Yavuz, Y. Cheng, J. Chen, C. M. Cobley, Q. Zhang, M. Rycenga, J. Xie, C. Kim, K. H. Song, A. G. Schwartz, L. V. Wang, and Y. Xia, “Gold nanocages covered by smart polymers for controlled release with near-infrared light,” Nat. Mater.8, 935–939 (2009). [CrossRef] [PubMed]
  9. M. W. Knight, H. Sobhani, P. Nordlander, and N. J. Halas, “Photodetection with active optical antennas,” Science332, 702–704 (2011). [CrossRef] [PubMed]
  10. L. Genzel and U. Kreibig, “Dielectric function and infrared absorption of small metal particles,” Z. Physik B37, 93–101 (1980). [CrossRef]
  11. M. Wilkinson, B. Mehlig, and P. N. Walker, “Magnetic dipole absorption of radiation in small conducting particles,” J. Phys. Condens. Matter10, 2739–2758 (1998). [CrossRef]
  12. P. M. Tomchuk and N. I. Grigorchuk, “Shape and size effects on the energy absorption by small metallic particles,” Phys. Rev. B73, 155423 (2006). [CrossRef]
  13. N. I. Grigorchuk and P. M. Tomchuk, “Theory for absorption of ultrashort laser pulses by spheroidal metallic nanoparticles,” Phys. Rev. B80, 155456 (2009). [CrossRef]
  14. A. García-Etxarri, R. Gómez-Medina, L. S. Froufe-Pérez, C. López, L. Chantada, E. Scheffold, J. Aizpurua, M. Nieto-Vesperinas, and J. J. Sáenz, “Strong magnetic response of submicron silicon particles in the infrared,” Opt. Express19, 4815–4826 (2011). [CrossRef] [PubMed]
  15. T. A. Evans and J. K. Furdyna, “Microwave magnetic dipole interaction in small InSb spheres: induced cyclotron-resonance-like absorption in the Rayleigh limit,” Phys. Rev. B8, 1461–1476 (1973). [CrossRef]
  16. P. O. Chapuis, M. Laroche, S. Volz, and J. J. Greffet, “Near-field induction heating of metallic nanoparticles due to infrared magnetic dipole contribution,” Phys. Rev. B77, 125402 (2008). [CrossRef]
  17. P. O. Chapuis, M. Laroche, S. Volz, and J. J. Greffet, “Radiative heat transfer between metallic nanoparticles,” Appl. Phys. Lett.93, 201906 (2008). [CrossRef]
  18. A. Manjavacas and F. J. García de Abajo, “Radiative heat transfer between neighboring particles,” Phys. Rev. B86, 075466 (2012). [CrossRef]
  19. A. Manjavacas and F. J. García de Abajo, “Thermal and vacuum friction acting on rotating particles,” Phys. Rev. A82, 063827 (2010). [CrossRef]
  20. S. Vignolini, F. Intonti, F. Riboli, L. Balet, L. H. Li, M. Francardi, A. Gerardino, A. Fiore, D. S. Wiersma, and M. Gurioli, “Magnetic imaging in photonic crystal microcavities,” Phys. Rev. Lett.105, 123902 (2010). [CrossRef] [PubMed]
  21. M. Burresi, T. Kampfrath, D. van Osten, J. C. Prangsma, B. S. Song, S. Noda, and L. Kuipers, “Magnetic light-matter interactions in photonics crystal nanocavity,” Phys. Rev. Lett.105, 123901 (2010). [CrossRef] [PubMed]
  22. H. W. Kihm, S. M. Koo, Q. H. Kim, K. Bao, J. E. Kihm, W. S. Bak, S. H. Eah, C. Lienau, H. Kim, P. Nordlander, N. J. Halas, N. K. Park, and D. S. Kim, “Bethe-hole polarization analyser for the magnetic vector of light,” Nat. Commun.2, 451 (2011). [CrossRef] [PubMed]
  23. S. Karaveli and R. Zia, “Strong enhancement of magnetic dipole emission in a multilevel electronic system,” Opt. Lett.35, 3318–3320 (2010). [CrossRef] [PubMed]
  24. S. Karaveli and R. Zia, “Spectral tuning by selective enhancement of electric and magnetic dipole emission,” Phys. Rev. Lett.106, 193004 (2011). [CrossRef] [PubMed]
  25. L. Shi, E. Xifré-Pérez, F. J. García de Abajo, and F. Meseguer, “Looking through the mirror: Optical microcavity-mirror image photonic interaction,” Opt. Express20, 11247–11255 (2012). [CrossRef] [PubMed]
  26. E. J. Zeman and G. C. Schatz, “An accurate electromagnetic theory study of surface enhancement factors for silver, gold, copper, lithium, sodium, aluminum, gallium, zinc, and cadmium,” J. Phys. Chem.91, 634–643 (1987). [CrossRef]
  27. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B6, 4370–4379 (1972). [CrossRef]
  28. H. C. van de Hulst, Light Scattering by Small Particles (Dover, New York, 1981).
  29. G. Mie, “Beiträge zur optik trüber medien, speziell kolloidaler metallösungen,” Ann. Phys. (Leipzig)25, 377–445 (1908).
  30. N. W. Ashcroft and N. D. Mermin, Solid State Physics (Harcourt College Publishers, New York, 1976).
  31. F. J. García de Abajo and A. Howie, “Relativistic electron energy loss and electron-induced photon emission in inhomogeneous dielectrics,” Phys. Rev. Lett.80, 5180–5183 (1998). [CrossRef]
  32. J. Zhang, K. F. MacDonald, and N. I. Zheludev arXiv:1203.6110v1.
  33. G. Baffou, R. Quidant, and F. J. García de Abajo, “Nanoscale control of optical heating in complex plasmonic systems,” ACS Nano4, 709–716 (2010). [CrossRef] [PubMed]
  34. A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science329, 930–933 (2010). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited