OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 27 — Dec. 17, 2012
  • pp: 28267–28272

Stopping light in two dimensional quasicrystalline waveguides

A. Trabattoni, L. Maini, and G. Benedek  »View Author Affiliations

Optics Express, Vol. 20, Issue 27, pp. 28267-28272 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (2268 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The introduction of defects in photonic lattices generally allows to control the localization and the propagation of light. While point defects are conventionally used in order to obtain localized photonic states, linear defects are introduced for waveguiding EM waves. In this work we demonstrate the possibility of obtaining localized states also in a waveguiding configuration, by using quasicrystalline lattices. This result opens a new range of possibilities in designing optical circuits, in which the localization-propagation switch is easly obtainable by mechanical or opto-electric methods.

© 2012 OSA

OCIS Codes
(130.5296) Integrated optics : Photonic crystal waveguides
(050.5298) Diffraction and gratings : Photonic crystals

ToC Category:
Photonic Crystals

Original Manuscript: October 22, 2012
Revised Manuscript: November 15, 2012
Manuscript Accepted: November 16, 2012
Published: December 5, 2012

A. Trabattoni, L. Maini, and G. Benedek, "Stopping light in two dimensional quasicrystalline waveguides," Opt. Express 20, 28267-28272 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett.58, 2059–2062 (1987) [CrossRef] [PubMed]
  2. S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett.58, 2486–2489 (1987) [CrossRef] [PubMed]
  3. E. Kuramochi, H. Taniyama, T. Tanabe, A. Shinya, and M. Notomi, “Ultrahigh-Q two-dimentional photonic crystal slab nanocavities in very thin barriers,” Applied Physics Letters93, 111112 (2008) [CrossRef]
  4. E. Gavartin, R. Braive, I. Sagnes, O. Arcizet, A. Beveratos, T. J. Kippenberg, and I. Robert-Philip, “Optomechanical coupling in a two-dimensional photonic crystal defect cavity,” Phys. Rev. Lett.106, 203902 (2011) [CrossRef] [PubMed]
  5. F. D. M. Haldane and S. Raghu, “Possible realization of directional optical waveguides in photonic crystals with broken time-reversal symmetry,” Phys. Rev. Lett.100, 013904 (2008) [CrossRef] [PubMed]
  6. J. C. Knight, J. Broeng, T. A. Birks, and P. S. J. Russell, “Photonic band gap guidance in optical fibers,” Science282, 5393 (1998) [CrossRef]
  7. D. Shechtman, I. Blech, D. Gratias, and J. W. Cahn, “Metallic phase with long-range orientational order and no translational symmetry,” Phys. Rev. Lett.53, 1951–1953 (1984) [CrossRef]
  8. D. Levine and P. J. Steinhardt, “Quasicrystals: a new class of ordered structures,” Phys. Rev. Lett.53, 2477–2480 (1984) [CrossRef]
  9. Y. S. Chan, C. T. Chan, and Z. Y. Liu, “Photonic band gaps in two dimensional photonic quasicrystals,” Phys. Rev. Lett.80, 956–959 (1998) [CrossRef]
  10. S. G. Johnson and J. D. Joannopoulos, “Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis,” Opt. Express8, 3, 173–190 (2001) [CrossRef]
  11. A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: a flexible free-software package for electromagnetic simulations by the FDTD method,” Computer Physics Communications181, 687–702 (2010) [CrossRef]
  12. M. Oxborrow and C. L. Henley, “Random square-triangle tilings: A model for twelvefold-symmetric quasicrystals,” Phys. Rev. B48, 6966–6998 (1993) [CrossRef]
  13. J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Molding the Flow of Light (Princeton University Press, 2008)
  14. S. R. Davis, S.D. Rommel, G. Farca, and M. H. Anderson, “A new electro-optic waveguide architecture and the unprecedented devices it enables,” Proc. SPIE6975, 697503 (2008) [CrossRef]
  15. W. Ruan, G. Li, J. Zeng, L. S. Kanzina, H. Zheng, K. Zhao, L. Zheng, and A. Ding, “Origin of the giant electro-optic Kerr effect in La-doped 75PMN-25PT transparent ceramics,” J. Appl. Phys.110, 074109 (2011) [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

Supplementary Material

» Media 1: AVI (427 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited