OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 27 — Dec. 17, 2012
  • pp: 28273–28280

25-terahertz-bandwidth all-optical temporal differentiator

Ming Li, Hoe-Seok Jeong, José Azaña, and Tae-Jung Ahn  »View Author Affiliations

Optics Express, Vol. 20, Issue 27, pp. 28273-28280 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1494 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



An all-optical temporal differentiator with a record operation bandwidth of ~25 THz (~200 nm, at least one order of magnitude larger than any previously reported temporal differentiation technology) is experimentally demonstrated based on a simple and compact all-fiber wavelength-selective directional coupler. The fabricated directional coupler can be used to process optical signals with time features as short as a few tens of femtosecond. A Gaussian-like optical pulse with a time-width of 250-fs is experimentally differentiated with a processing error of 2.1%. As an application example, a chirp-free flat-top pulse with a time-width of 540-fs is also successfully generated.

© 2012 OSA

OCIS Codes
(060.1810) Fiber optics and optical communications : Buffers, couplers, routers, switches, and multiplexers
(060.7140) Fiber optics and optical communications : Ultrafast processes in fibers
(070.4560) Fourier optics and signal processing : Data processing by optical means
(200.4740) Optics in computing : Optical processing
(320.7140) Ultrafast optics : Ultrafast processes in fibers

ToC Category:
Ultrafast Optics

Original Manuscript: November 1, 2012
Revised Manuscript: November 22, 2012
Manuscript Accepted: November 23, 2012
Published: December 5, 2012

Ming Li, Hoe-Seok Jeong, José Azaña, and Tae-Jung Ahn, "25-terahertz-bandwidth all-optical temporal differentiator," Opt. Express 20, 28273-28280 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. L. Venema, “Photonics technologies,” Nat. Insight424(6950), 809 (2003). [CrossRef]
  2. H. J. Caulfield and S. Dolev, “Why future supercomputing requires optics,” Nat. Photonics4(5), 261–263 (2010). [CrossRef]
  3. R. S. Tucker, “The role of optics in computing,” Nat. Photonics4(7), 405 (2010). [CrossRef]
  4. D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26 Tbit/s−1 line-rate super-channel transmission utilizing all-optical fast Fourier transform processing,” Nat. Photonics5(6), 364–371 (2011). [CrossRef]
  5. L. Liu, R. Kumar, K. Huybrechts, T. Spuesens, G. Roelkens, E.-J. Geluk, T. de Vries, P. Regreny, D. Van Thourhout, R. Baets, and G. Morthier, “An ultra-small, low-power, all-optical flip-flop memory on a silicon chip,” Nat. Photonics4(3), 182–187 (2010). [CrossRef]
  6. M. T. Hill, H. J. S. Dorren, T. De Vries, X. J. M. Leijtens, J. H. Den Besten, B. Smalbrugge, Y. S. Oei, H. Binsma, G. D. Khoe, and M. K. Smit, “A fast low-power optical memory based on coupled micro-ring lasers,” Nature432(7014), 206–209 (2004). [CrossRef] [PubMed]
  7. C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon–organic hybrid slot waveguides,” Nat. Photonics3(4), 216–219 (2009). [CrossRef]
  8. J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics1(6), 319–330 (2007). [CrossRef]
  9. M. A. Foster, R. Salem, D. F. Geraghty, A. C. Turner-Foster, M. Lipson, and A. L. Gaeta, “Silicon-chip-based ultrafast optical oscilloscope,” Nature456(7218), 81–84 (2008). [CrossRef] [PubMed]
  10. J. Azaña, C. K. Madsen, K. Takiguchi, and G. Cincontti, “Special issue on “Optical signal processing,” J. Lightwave Technol.24(7), 2484–2486 (2006). [CrossRef]
  11. N. Q. Ngo, S. F. Yu, S. C. Tjin, and C. H. Kam, “A new theoretical basis of higher-derivative optical differentiators,” Opt. Commun.230(1-3), 115–129 (2004). [CrossRef]
  12. J. Azaña, “Ultrafast analog all-optical signal processors based on fiber-grating devices,” IEEE Photon. J.2(3), 359–386 (2010). [CrossRef]
  13. M. Li, D. Janner, J. P. Yao, and V. Pruneri, “Arbitrary-order all-fiber temporal differentiator based on a fiber Bragg grating: design and experimental demonstration,” Opt. Express17(22), 19798–19807 (2009). [CrossRef] [PubMed]
  14. M. Li, L. Shao, J. Albert, and J. P. Yao, “Continuously tunable photonic fractional temporal differentiator based on a tilted fiber Bragg grating,” IEEE Photon. Technol. Lett.23(4), 251–253 (2011). [CrossRef]
  15. R. Slavík, Y. Park, M. Kulishov, R. Morandotti, and J. Azaña, “Ultrafast all-optical differentiators,” Opt. Express14(22), 10699–10707 (2006). [CrossRef] [PubMed]
  16. F. Liu, T. Wang, L. Qiang, T. Ye, Z. Zhang, M. Qiu, and Y. Su, “Compact optical temporal differentiator based on silicon microring resonator,” Opt. Express16(20), 15880–15886 (2008). [CrossRef] [PubMed]
  17. Y. Park, J. Azaña, and R. Slavík, “Ultrafast all-optical first- and higher-order differentiators based on interferometers,” Opt. Lett.32(6), 710–712 (2007). [CrossRef] [PubMed]
  18. M. Ferrera, Y. Park, L. Razzari, B. E. Little, S. T. Chu, R. Morandotti, D. J. Moss, and J. Azaña, “On-chip CMOS-compatible all-optical integrator,” Nat Commun1(3), 29–33 (2010). [CrossRef] [PubMed]
  19. J. Azaña, “Proposal of a uniform fiber Bragg grating as an ultrafast all-optical integrator,” Opt. Lett.33(1), 4–6 (2008). [CrossRef] [PubMed]
  20. R. Slavík, Y. Park, N. Ayotte, S. Doucet, T.-J. Ahn, S. LaRochelle, and J. Azaña, “Photonic temporal integrator for all-optical computing,” Opt. Express16(22), 18202–18214 (2008). [CrossRef] [PubMed]
  21. T. Hirooka and M. Nakazawa, “Optical adaptive equalization of high-speed signals using time-domain optical Fourier transformation,” J. Lightwave Technol.24(7), 2530–2540 (2006). [CrossRef]
  22. K. Dolgaleva, A. Malacarne, P. Tannouri, L. A. Fernandes, J. R. Grenier, J. S. Aitchison, J. Azaña, R. Morandotti, P. R. Herman, and P. V. S. Marques, “Integrated optical temporal Fourier transformer based on a chirped Bragg grating waveguide,” Opt. Lett.36(22), 4416–4418 (2011). [CrossRef] [PubMed]
  23. M. A. Muriel, J. Azaña, and A. Carballar, “Real-time Fourier transformer based on fiber gratings,” Opt. Lett.24(1), 1–3 (1999). [CrossRef] [PubMed]
  24. M. H. Asghari and J. Azaña, “All-optical Hilbert transformer based on a single phase-shifted fiber Bragg grating: design and analysis,” Opt. Lett.34(3), 334–336 (2009). [CrossRef] [PubMed]
  25. M. Li and J. Yao, “All-fiber temporal photonic fractional Hilbert transformer based on a directly designed fiber Bragg grating,” Opt. Lett.35(2), 223–225 (2010). [CrossRef] [PubMed]
  26. M. Li and J. Yao, “Experimental demonstration of a wideband photonic temporal Hilbert transformer based on a single fiber Bragg grating,” IEEE Photon. Technol. Lett.22(21), 1559–1561 (2010). [CrossRef]
  27. T.-J. Ahn and J. Azaña, “Wavelength-selective directional couplers as ultrafast optical differentiators,” Opt. Express19(8), 7625–7632 (2011). [CrossRef] [PubMed]
  28. R. Zengerle and O. Leminger, “Wavelength-selective directional coupler made of nonidentical single-mode fibers,” J. Lightwave Technol.4(7), 823–827 (1986). [CrossRef]
  29. F. Bilodeau, K. O. Hill, S. Faucher, and D. C. Johnson, “Low-loss highly overcoupled fused coupler: Fabrication and sensitivity to external pressure,” J. Lightwave Technol.6(10), 1476–1482 (1988). [CrossRef]
  30. A. Trisorio, S. Grabielle, M. Divall, N. Forget, and C. P. Hauri, “Self-referenced spectral interferometry for ultrashort infrared pulse characterization,” Opt. Lett.37(14), 2892–2894 (2012). [CrossRef] [PubMed]
  31. L. Lepetit, G. Chériaux, and M. Joffre, “Linear technique of phase measurement by femtosecond spectral interferometry for applications in spectroscopy,” J. Opt. Soc. Am. B12(12), 2467–2474 (1995). [CrossRef]
  32. C. Dorrer, N. Belabas, J. P. Likforman, and M. Joffre, “Spectral resolution and sampling issues in Fourier-transform spectral interferometry,” J. Opt. Soc. Am. B17(10), 1795–1802 (2000). [CrossRef]
  33. Y. Park, M. Kulishov, R. Slavík, and J. Azaña, “Picosecond and sub-picosecond flat-top pulse generation using uniform long-period fiber gratings,” Opt. Express14(26), 12670–12678 (2006). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited