OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 27 — Dec. 17, 2012
  • pp: 28301–28318

Coherence and polarization properties of a radially polarized beam with variable spatial coherence

Gaofeng Wu, Fei Wang, and Yangjian Cai  »View Author Affiliations


Optics Express, Vol. 20, Issue 27, pp. 28301-28318 (2012)
http://dx.doi.org/10.1364/OE.20.028301


View Full Text Article

Enhanced HTML    Acrobat PDF (2306 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In a recent publication [Appl. Phys. Lett, 100, 051108 (2012)], a radially polarized (RP) beam with variable spatial coherence (i.e., partially coherent RP beam) was generated experimentally. In this paper, we derive the realizability conditions for a partially coherent RP beam, and we carry out theoretical and experimental study of the coherence and polarization properties of a partially coherent RP beam. It is found that after passing through a thin lens, both the degree of coherence and the degree of polarization of a partially coherent RP beam varies on propagation, while the state of polarization of the completely polarized part of such beam remains invariant. The variations of the degree of coherence and the degree of polarization depend closely on the initial spatial coherence. Our experimental results agree well with the theoretical predictions.

© 2012 OSA

OCIS Codes
(030.0030) Coherence and statistical optics : Coherence and statistical optics
(260.5430) Physical optics : Polarization
(350.5500) Other areas of optics : Propagation

ToC Category:
Coherence and Statistical Optics

History
Original Manuscript: September 18, 2012
Revised Manuscript: October 29, 2012
Manuscript Accepted: November 27, 2012
Published: December 6, 2012

Citation
Gaofeng Wu, Fei Wang, and Yangjian Cai, "Coherence and polarization properties of a radially polarized beam with variable spatial coherence," Opt. Express 20, 28301-28318 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-27-28301


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. Q. Zhan, “Cylindrical vector beams: from mathematical concepts to applications,” Adv. Opt. Photon.1(1), 1–57 (2009). [CrossRef]
  2. Q. Zhan and J. R. Leger, “Focus shaping using cylindrical vector beams,” Opt. Express10(7), 324–331 (2002). [CrossRef] [PubMed]
  3. K. S. Youngworth and T. G. Brown, “Focusing of high numerical aperture cylindrical-vector beams,” Opt. Express7(2), 77–87 (2000). [CrossRef] [PubMed]
  4. R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett.91(23), 233901 (2003). [CrossRef] [PubMed]
  5. D. P. Biss and T. G. Brown, “Cylindrical vector beam focusing through a dielectric interface,” Opt. Express9(10), 490–497 (2001). [CrossRef] [PubMed]
  6. P. Wróbel, J. Pniewski, T. J. Antosiewicz, and T. Szoplik, “Focusing radially polarized light by a concentrically corrugated silver film without a hole,” Phys. Rev. Lett.102(18), 183902 (2009). [CrossRef] [PubMed]
  7. L. Novotny, M. R. Beversluis, K. S. Youngworth, and T. G. Brown, “Longitudinal field modes probed by single molecules,” Phys. Rev. Lett.86(23), 5251–5254 (2001). [CrossRef] [PubMed]
  8. Q. Zhan, “Trapping metallic Rayleigh particles with radial polarization,” Opt. Express12(15), 3377–3382 (2004). [CrossRef] [PubMed]
  9. D. P. Biss, K. S. Youngworth, and T. G. Brown, “Dark-field imaging with cylindrical-vector beams,” Appl. Opt.45(3), 470–479 (2006). [CrossRef] [PubMed]
  10. H. Wang, L. Shi, B. Lukyanchuk, C. J. R. Sheppard, and C. T. Chong, “Creation of a needle of longitudinally polarized light in vacuum using binary optics,” Nat. Photonics2(8), 501–505 (2008). [CrossRef]
  11. W. Chen, D. C. Abeysinghe, R. L. Nelson, and Q. Zhan, “Plasmonic lens made of multiple concentric metallic rings under radially polarized illumination,” Nano Lett.9(12), 4320–4325 (2009). [CrossRef] [PubMed]
  12. M. Meier, V. Romano, and T. Feurer, “Material processing with pulsed radially and azimuthally polarized laser radiation,” Appl. Phys. B86, 329–334 (2007).
  13. Y. Zhang, B. Ding, and T. Suyama, “Trapping two types of particles using a double-ring-shaped radially polarized beam,” Phys. Rev. A81(2), 023831 (2010). [CrossRef]
  14. K. P. Singh and M. Kumar, “Electron acceleration by a radially polarized laser pulse during ionization of low density gases,” Phys. Rev. ST Accel. Beams14(3), 030401 (2011). [CrossRef]
  15. J. Li, Y. Salamin, B. J. Galow, and C. Keitel, “Acceleration of proton bunches by petawatt chirped radially polarized laser pulses,” Phys. Rev. A85(6), 063832 (2012). [CrossRef]
  16. A. A. Tovar, “Production and propagation of cylindrically polarized Laguerre–Gaussian laser beams,” J. Opt. Soc. Am. A15(10), 2705–2711 (1998). [CrossRef]
  17. D. Deng, “Nonparaxial propagation of radially polarized light beams,” J. Opt. Soc. Am. B23(6), 1228–1234 (2006). [CrossRef]
  18. D. Deng and Q. Guo, “Analytical vectorial structure of radially polarized light beams,” Opt. Lett.32(18), 2711–2713 (2007). [CrossRef] [PubMed]
  19. Y. Cai, Q. Lin, H. T. Eyyuboğlu, and Y. Baykal, “Average irradiance and polarization properties of a radially or azimuthally polarized beam in a turbulent atmosphere,” Opt. Express16(11), 7665–7673 (2008). [CrossRef] [PubMed]
  20. W. Cheng, J. W. Haus, and Q. Zhan, “Propagation of vector vortex beams through a turbulent atmosphere,” Opt. Express17(20), 17829–17836 (2009). [CrossRef] [PubMed]
  21. L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge U. Press, 1995).
  22. E. Wolf, Introduction to the Theory of Coherence and Polarization of Light (Cambridge U. Press, 2007).
  23. E. Wolf, “Unified theory of coherence and polarization of random electromagnetic beams,” Phys. Lett. A312(5-6), 263–267 (2003). [CrossRef]
  24. F. Gori, “Matrix treatment for partially polarized, partially coherent beams,” Opt. Lett.23(4), 241–243 (1998). [CrossRef] [PubMed]
  25. F. Gori, M. Santarsiero, G. Piquero, R. Borghi, A. Mondello, and R. Simon, “Partially polarized Gaussian Schell-model beams,” J. Opt. A, Pure Appl. Opt.3(1), 1–9 (2001). [CrossRef]
  26. O. Korotkova, M. Salem, and E. Wolf, “Beam conditions for radiation generated by an electromagnetic Gaussian Schell-model source,” Opt. Lett.29(11), 1173–1175 (2004). [CrossRef] [PubMed]
  27. O. Korotkova and E. Wolf, “Generalized Stokes parameters of random electromagnetic beams,” Opt. Lett.30(2), 198–200 (2005). [CrossRef] [PubMed]
  28. O. Korotkova and E. Wolf, “Changes in the state of polarization of a random electromagnetic beam on propagation,” Opt. Commun.246(1-3), 35–43 (2005). [CrossRef]
  29. T. Shirai and E. Wolf, “Correlation between intensity fluctuations in stochastic electromagnetic beams of any state of coherence and polarization,” Opt. Commun.272(2), 289–292 (2007). [CrossRef]
  30. J. Tervo, T. Setälä, and A. T. Friberg, “Degree of coherence for electromagnetic fields,” Opt. Express11(10), 1137–1143 (2003). [CrossRef] [PubMed]
  31. J. Ellis, A. Dogariu, S. Ponomarenko, and E. Wolf, “Degree of polarization of statistically stationary electromagnetic fields,” Opt. Commun.248(4-6), 333–337 (2005). [CrossRef]
  32. O. Korotkova and E. Wolf, “Spectral degree of coherence of a random three-dimensional electromagnetic field,” J. Opt. Soc. Am. A21(12), 2382–2385 (2004). [CrossRef] [PubMed]
  33. F. Gori, M. Santarsiero, R. Borghi, and V. Ramírez-Sánchez, “Realizability condition for electromagnetic Schell-model sources,” J. Opt. Soc. Am. A25(5), 1016–1021 (2008). [CrossRef] [PubMed]
  34. L. Zhang, F. Wang, Y. Cai, and O. Korotkova, “Degree of paraxiality of a stochastic electromagnetic Gaussian Schell-model beam,” Opt. Commun.284(5), 1111–1117 (2011). [CrossRef]
  35. T. Shirai, O. Korotkova, and E. Wolf, “A method of generating electromagnetic Gaussian Schell-model beams,” J. Opt. A, Pure Appl. Opt.7(5), 232–237 (2005). [CrossRef]
  36. M. Santarsiero, R. Borghi, and V. Ramirez-Sanchez, “Synthesis of electromagnetic Schell-model sources,” J. Opt. Soc. Am. A26(6), 1437–1443 (2009). [CrossRef]
  37. B. Kanseri, S. Rath, and H. C. Kandpal, “Determination of the beam coherence-polarization matrix of a random electromagnetic beam,” IEEE J. Quantum Electron.45(9), 1163–1167 (2009). [CrossRef]
  38. F. Wang, G. Wu, X. Liu, S. Zhu, and Y. Cai, “Experimental measurement of the beam parameters of an electromagnetic Gaussian Schell-model source,” Opt. Lett.36(14), 2722–2724 (2011). [CrossRef] [PubMed]
  39. M. Salem and G. P. Agrawal, “Coupling of stochastic electromagnetic beams into optical fibers,” Opt. Lett.34(18), 2829–2831 (2009). [CrossRef] [PubMed]
  40. C. Zhao, Y. Dong, G. Wu, F. Wang, Y. Cai, and O. Korotkova, “Experimental demonstration of coupling of an electromagnetic Gaussian Schell-model beam into a single-mode optical fiber,” Appl. Phys. B, doi:. [CrossRef]
  41. O. Korotkova, “Scintillation index of a stochastic electromagnetic beam propagating in random media,” Opt. Commun.281(9), 2342–2348 (2008). [CrossRef]
  42. M. Yao, Y. Cai, H. T. Eyyuboğlu, Y. Baykal, and O. Korotkova, “Evolution of the degree of polarization of an electromagnetic Gaussian Schell-model beam in a Gaussian cavity,” Opt. Lett.33(19), 2266–2268 (2008). [CrossRef] [PubMed]
  43. Y. Cai, O. Korotkova, H. T. Eyyuboğlu, and Y. Baykal, “Active laser radar systems with stochastic electromagnetic beams in turbulent atmosphere,” Opt. Express16(20), 15834–15846 (2008). [CrossRef] [PubMed]
  44. C. Zhao, Y. Cai, and O. Korotkova, “Radiation force of scalar and electromagnetic twisted Gaussian Schell-model beams,” Opt. Express17(24), 21472–21487 (2009). [CrossRef] [PubMed]
  45. Z. Tong, Y. Cai, and O. Korotkova, “Ghost imaging with electromagnetic stochastic beams,” Opt. Commun.283(20), 3838–3845 (2010). [CrossRef]
  46. Z. Tong and O. Korotkova, “Theory of weak scattering of stochastic electromagnetic fields from deterministic and random media,” Phys. Rev. A82(3), 033836 (2010). [CrossRef]
  47. M. Yao, Y. Cai, O. Korotkova, Q. Lin, and Z. Wang, “Spatio-temporal coupling of random electromagnetic pulses interacting with reflecting gratings,” Opt. Express18(21), 22503–22514 (2010). [CrossRef] [PubMed]
  48. G. Wu and Y. Cai, “Modulation of spectral intensity, polarization and coherence of a stochastic electromagnetic beam,” Opt. Express19(9), 8700–8714 (2011). [CrossRef] [PubMed]
  49. M. Salem and E. Wolf, “Coherence-induced polarization changes in light beams,” Opt. Lett.33(11), 1180–1182 (2008). [CrossRef] [PubMed]
  50. I. Vidal, E. J. S. Fonseca, and J. M. Hickmann, “Light polarization control during free-space propagation using coherence,” Phys. Rev. A84(3), 033836 (2011). [CrossRef]
  51. S. Sahin, Z. Tong, and O. Korotkova, “Sensing of semi-rough targets embedded in atmospheric turbulence by means of stochastic electromagnetic beams,” Opt. Commun.283(22), 4512–4518 (2010). [CrossRef]
  52. Y. Dong, Y. Cai, C. Zhao, and M. Yao, “Statistics properties of a cylindrical vector partially coherent beam,” Opt. Express19(7), 5979–5992 (2011). [CrossRef] [PubMed]
  53. Y. Dong, F. Feng, Y. Chen, C. Zhao, and Y. Cai, “Statistical properties of a nonparaxial cylindrical vector partially coherent field in free space,” Opt. Express20(14), 15908–15927 (2012). [CrossRef] [PubMed]
  54. Y. Luo and B. Lu, “Spectral stokes singularities of partially coherent radially polarized beams focused by a high numerical aperture objective,” J. Opt.12(11), 115703 (2010). [CrossRef]
  55. H. Wang, D. Liu, and Z. Zhou, “The propagation of radially polarized partially coherent beam through an optical system in turbulent atmosphere,” Appl. Phys. B101(1-2), 361–369 (2010). [CrossRef]
  56. H. Lin and J. Pu, “Propagation properties of partially coherent radially polarized beam in a turbulent atmosphere,” J. Mod. Opt.56(11), 1296–1303 (2009). [CrossRef]
  57. F. Wang, Y. Cai, Y. Dong, and O. Korotkova, “Experimental generation of a radially polarized beam with controllable spatial coherence,” Appl. Phys. Lett.100(5), 051108 (2012). [CrossRef]
  58. Q. Lin and Y. Cai, “Tensor ABCD law for partially coherent twisted anisotropic Gaussian-Schell model beams,” Opt. Lett.27(4), 216–218 (2002). [CrossRef] [PubMed]
  59. P. De Santis, F. Gori, G. Guattari, and C. Palma, “an example of a collectt-wolf source,” Opt. Commun.29(3), 256–260 (1979). [CrossRef]
  60. F. Wang and Y. Cai, “Experimental observation of fractional Fourier transform for a partially coherent optical beam with Gaussian statistics,” J. Opt. Soc. Am. A24(7), 1937–1944 (2007). [CrossRef] [PubMed]
  61. M. Born and E. Wolf, Principles of optics, seventh ed. (Cambridge University Press, Cambridge, 1999).
  62. G. Piquero, F. Gori, P. Romanini, M. Santarsiero, R. Borghi, and A. Mondello, “Synthesis of partially polarized Gaussian Schell-model sources,” Opt. Commun.208(1-3), 9–16 (2002). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited