OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 27 — Dec. 17, 2012
  • pp: 28363–28372

Compressive multi-heterodyne optical spectroscopy

Nikhil Mehta, Jingbiao Chen, Zhigang Zhang, and Zhiwen Liu  »View Author Affiliations

Optics Express, Vol. 20, Issue 27, pp. 28363-28372 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (2237 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We propose a framework for Compressive Multi-heterodyne Optical Spectroscopy [CMOS], based on multiple heterodyne measurements of an optical signal mixed with a dynamically encoded frequency comb. The sparsity of optical spectra of interest is exploited by using the compressive sensing strategy to significantly reduce the number of heterodyne measurements. Numerical results are presented to demonstrate retrieval of coherent and incoherent hypothetical singly resonant sparse spectra over a 2 THz-wide bandwidth, sampled every 100 MHz, by using less than 50% measurements.

© 2012 OSA

OCIS Codes
(300.6310) Spectroscopy : Spectroscopy, heterodyne
(300.6320) Spectroscopy : Spectroscopy, high-resolution
(070.2025) Fourier optics and signal processing : Discrete optical signal processing

ToC Category:

Original Manuscript: October 4, 2012
Revised Manuscript: November 19, 2012
Manuscript Accepted: November 20, 2012
Published: December 6, 2012

Nikhil Mehta, Jingbiao Chen, Zhigang Zhang, and Zhiwen Liu, "Compressive multi-heterodyne optical spectroscopy," Opt. Express 20, 28363-28372 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. Mittleman, R. Jacobsen, R. Neelamani, R. Baraniuk, and M. Nuss, “Gas sensing using terahertz time-domain spectroscopy,” Appl. Phys. B67(3), 379–390 (1998). [CrossRef]
  2. K. Kawase, Y. Ogawa, Y. Watanabe, and H. Inoue, “Non-destructive terahertz imaging of illicit drugs using spectral fingerprints,” Opt. Express11(20), 2549–2554 (2003). [CrossRef] [PubMed]
  3. A. Markelz, A. Roitberg, and E. Heilweil, “Pulsed terahertz spectroscopy of DNA, bovine serum albumin and collagen between 0.1 and 2.0 THz,” Chem. Phys. Lett.320(1-2), 42–48 (2000). [CrossRef]
  4. P. Del'Haye, O. Arcizet, M. Gorodetsky, R. Holzwarth, and T. Kippenberg, “Frequency comb assisted diode laser spectroscopy for measurement of microcavity dispersion,” Nat. Photonics3(9), 529–533 (2009). [CrossRef]
  5. T. Udem, R. Holzwarth, and T. Hansch, “Femtosecond optical frequency combs,” Eur. Phys. J.172, 69–79 (2009).
  6. J. Reichert, M. Niering, R. Holzwarth, M. Weitz, T. Udem, and T. W. Hansch, “Phase coherent vacuum-ultraviolet to radio frequency comparison with a mode-locked laser,” Phys. Rev. Lett.84(15), 3232–3235 (2000). [CrossRef] [PubMed]
  7. M. Fischer, N. Kolachevsky, M. Zimmermann, R. Holzwarth, T. Udem, T. W. Hänsch, M. Haas, U. D. Jentschura, and C. H. Keitel, “New limits on the drift of fundamental constants from laboratory measurements,” Phys. Rev. Lett.92(23), 230802 (2004). [CrossRef] [PubMed]
  8. S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, T. Udem, and T. W. Hansch, “Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb,” Phys. Rev. Lett.84(22), 5102–5105 (2000). [CrossRef] [PubMed]
  9. R. Holzwarth, T. Udem, T. W. Hansch, J. C. Knight, W. J. Wadsworth, and P. S. Russell, “Optical frequency synthesizer for precision spectroscopy,” Phys. Rev. Lett.85(11), 2264–2267 (2000). [CrossRef] [PubMed]
  10. T. Udem, R. Holzwarth, and T. W. Hänsch, “Optical frequency metrology,” Nature416(6877), 233–237 (2002). [CrossRef] [PubMed]
  11. I. Coddington, W. Swann, and N. Newbury, “Coherent multi-heterodyne spectroscopy using stabilized optical frequency combs,” Phys. Rev. Lett.100(1), 013902 (2008). [CrossRef]
  12. T. Yasui, Y. Kabetani, E. Saneyoshi, S. Yokoyama, and T. Araki, “Terahertz frequency comb by multifrequency-heterodyning photoconductive detection for high-accuracy, high-resolution terahertz spectroscopy,” Appl. Phys. Lett.88(24), 241104 (2006). [CrossRef]
  13. F. Keilmann, C. Gohle, and R. Holzwarth, “Time-domain mid-infrared frequency-comb spectrometer,” Opt. Lett.29(13), 1542–1544 (2004). [CrossRef] [PubMed]
  14. J. Mandon, G. Guelachvili, and N. Picqué, “Fourier transform spectroscopy with a laser frequency comb,” Nat. Photonics3(2), 99–102 (2009). [CrossRef]
  15. F. Adler, P. Masłowski, A. Foltynowicz, K. C. Cossel, T. C. Briles, I. Hartl, and J. Ye, “Mid-infrared fourier transform spectroscopy with a broadband frequency comb,” Opt. Express18(21), 21861–21872 (2010). [CrossRef] [PubMed]
  16. T. Ideguchi, B. Bernhardt, G. Guelachvili, T. W. Hänsch, and N. Picqué, “Raman-induced Kerr-effect dual-comb spectroscopy,” Opt. Lett.37(21), 4498–4500 (2012). [CrossRef] [PubMed]
  17. A. Schliesser, M. Brehm, F. Keilmann, and D. van der Weide, “Frequency-comb infrared spectrometer for rapid, remote chemical sensing,” Opt. Express13(22), 9029–9038 (2005). [CrossRef] [PubMed]
  18. S. Diddams, “The evolving optical frequency comb [Invited],” J. Opt. Soc. Am. B27(11), B51–B62 (2010). [CrossRef]
  19. E. Candes and M. Wakin, “An introduction to compressive sampling,” IEEE Sig. Proc. Mag.25(2), 21–30 (2008). [CrossRef]
  20. M. F. Duarte, M. A. Davenport, D. Takhar, J. N. Laska, K. F. Ting Sun, Kelly, and R. G. Baraniuk, “Single-pixel imaging via compressive sampling,” IEEE Sig. Proc. Mag.25(2), 83–91 (2008). [CrossRef]
  21. D. J. Brady, K. Choi, D. L. Marks, R. Horisaki, and S. Lim, “Compressive holography,” Opt. Express17(15), 13040–13049 (2009). [CrossRef] [PubMed]
  22. See Fig, 18.4 in A. Yariv and P. Yeh, in Photonics: Optical Electronics in Modern Communications (Oxford University Press, 2007)
  23. A. Weiner, “Femtosecond pulse shaping using spatial light modulators,” Rev. Sci. Instrum.71(5), 1929–1960 (2000). [CrossRef]
  24. C. Shannon, “Communication in the presence of noise,” Proc. IRE 37, 10–21 (1949).
  25. E. Candès, J. Romberg, and T. Tao, “Stable signal recovery from incomplete and inaccurate measurements,” Commun. Pure Appl. Math.59(8), 1207–1223 (2006). [CrossRef]
  26. D. Donoho, “Compressed sensing,” IEEE Trans. Inf. Theory52(4), 1289–1306 (2006). [CrossRef]
  27. E. J. Candès, “Compressive sampling,” in Proceedings of the International Congress of Mathematicians: Madrid, August 22–30, 1433–1452 (2006).
  28. J. H. Reed, in Software radio: a modern approach to radio engineering (Prentice Hall Professional, 2002).
  29. T. Okoshi, K. Kikuchi, and A. Nakayama, “Novel method for high resolution measurement of laser output spectrum,” Elec. Lett.16(16), 630–631 (1980). [CrossRef]
  30. See §2.4 in L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge University Press, 1995).
  31. J. M. Bioucas-Dias and M. A. Figueiredo, “A new TwIST: two-step iterative shrinkage/thresholding algorithms for image restoration,” IEEE Trans. Image Process.16(12), 2992–3004 (2007). [CrossRef] [PubMed]
  32. A. Maleki and D. Donoho, “Optimally tuned iterative reconstruction algorithms for compressed sensing,” IEEE J. Sel. Top. Sig. Proc.4(2), 330–341 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited