OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 27 — Dec. 17, 2012
  • pp: 28379–28387

Hollow-core photonic crystal fiber probe for remote fluorescence sensing with single molecule sensitivity

Petru Ghenuche, Hervé Rigneault, and Jérôme Wenger  »View Author Affiliations


Optics Express, Vol. 20, Issue 27, pp. 28379-28387 (2012)
http://dx.doi.org/10.1364/OE.20.028379


View Full Text Article

Enhanced HTML    Acrobat PDF (1986 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Current optical fiber probes for fluorescence spectroscopy struggle with large luminescence background and low detection sensitivities that challenge the detection of fluorescent molecules at sub-micromolar concentration. Here we report the demonstration of a hollow-core photonic crystal fiber (HC-PCF) probe for remote fluorescence sensing with single molecule sensitivity down to nanomolar concentrations, where both the excitation and fluorescence beams are counter-propagating through the same fiber. A 20 μm polystyrene microsphere is used to efficiently excite and collect the fluorescence from the sample solution thanks to a photonic nanojet effect. Compared to earlier work with silica fibers, the new HC-PCF-microsphere probe achieves a 200x improvement of the signal-to-noise ratio for a single molecule detection event, and a 1000x reduction of the minimum detectable concentration. The device is implemented with fluorescence correlation spectroscopy to distinguish between molecules of similar fluorescence spectra based on the analysis of their translational diffusion properties, and provides similar performance as conventional confocal microscopes.

© 2012 OSA

OCIS Codes
(120.0280) Instrumentation, measurement, and metrology : Remote sensing and sensors
(120.6200) Instrumentation, measurement, and metrology : Spectrometers and spectroscopic instrumentation
(170.6280) Medical optics and biotechnology : Spectroscopy, fluorescence and luminescence
(350.3950) Other areas of optics : Micro-optics
(060.5295) Fiber optics and optical communications : Photonic crystal fibers

ToC Category:
Sensors

History
Original Manuscript: October 18, 2012
Revised Manuscript: November 23, 2012
Manuscript Accepted: November 23, 2012
Published: December 6, 2012

Virtual Issues
Vol. 8, Iss. 1 Virtual Journal for Biomedical Optics

Citation
Petru Ghenuche, Hervé Rigneault, and Jérôme Wenger, "Hollow-core photonic crystal fiber probe for remote fluorescence sensing with single molecule sensitivity," Opt. Express 20, 28379-28387 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-27-28379


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. F. Helmchen, “Miniaturization of fluorescence microscopes using fibre optics,” Exp. Physiol.87, 737–745 (2002). [CrossRef] [PubMed]
  2. J. R. Epstein and D. R. Walt, “Fluorescence-based fibre optic arrays: a universal platform for sensing,” Chem. Soc. Rev.32, 203–214 (2003). [CrossRef] [PubMed]
  3. U. Utzinger and R. R. Richards-Kortum, “Fiber optic probes for biomedical optical spectroscopy,” J. Biomed. Opt.8, 121–147 (2003). [CrossRef] [PubMed]
  4. O. S. Wolfbeis, “Fiber-optic chemical sensors and biosensors,” Anal. Chem.78, 3859–3873 (2006). [CrossRef] [PubMed]
  5. J. Ma and Y.-S. Li, “Fiber Raman background study and its application in setting up optical fiber Raman probes,” Appl. Opt.35, 2527–2533 (1996). [CrossRef] [PubMed]
  6. K. Garai, M. Muralidhar, and S. Maiti, “Fiber-optic fluorescence correlation spectrometer,” Appl. Opt.45, 7538–7542 (2006). [CrossRef] [PubMed]
  7. K. Garai, R. Sureka, and S. Maiti, “Detecting amyloid-beta aggregation with fiber-based fluorescence correlation spectroscopy,” Biophys. J.92, L55–L57 (2007). [CrossRef] [PubMed]
  8. Y.-C. Chang, J. Y. Ye, T. Thomas, Y. Chen, J. R. Baker, and T. B. Norris, “Two-photon fluorescence correlation spectroscopy through dual-clad optical fiber,” Opt. Express16, 12640–12649 (2008). [CrossRef] [PubMed]
  9. H. Aouani, F. Deiss, J. Wenger, P. Ferrand, N. Sojic, and H. Rigneault, “Optical-fiber-microsphere for remote fluorescence correlation spectroscopy,” Opt. Express17, 19085–19092 (2009). [CrossRef]
  10. N. K. Singh, J. V. Chacko, V. K. A. Sreenivasan, S. Nag, and S. Maiti, “Ultracompact alignment-free single molecule fluorescence device with a foldable light path,” J. Biomed. Opt.16, 025004 (2011). [CrossRef] [PubMed]
  11. P. Haas, P. Then, A. Wild, W. Grange, S. Zorman, M. Hegner, M. Calame, U. Aebi, J. Flammer, and B. Hecht, “Fast Quantitative Single-Molecule Detection at Ultralow Concentrations,” Anal. Chem.82, 6299–6302 (2010). [CrossRef] [PubMed]
  12. R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, and D. C. Allan, “Single-Mode Photonic Band Gap Guidance of Light in Air,” Science285, 1537–1539 (1999). [CrossRef] [PubMed]
  13. P. St. J. Russell, “Photonic crystal fibers,” J. Ligthwave Technol.24, 4729–4749 (2006). [CrossRef]
  14. P. Ghenuche, S. Rammler, N. Y. Joly, M. Scharrer, M. Frosz, J. Wenger, P. St. J. Russell, and H. Rigneault, “Kagome hollow-core photonic crystal fiber probe for Raman spectroscopy,” Opt. Lett.37, 4371–4373 (2012). [CrossRef] [PubMed]
  15. S. O. Konorov, A. Zheltikov, and M. Scalora, “Photonic-crystal fiber as a multifunctional optical sensor and sample collector,” Opt. Express13, 3454–3459 (2005). [CrossRef] [PubMed]
  16. S. O. Konorov, C. J. Addison, H. G. Schulze, R. F. B. Turner, and M. W. Blades, “Hollow-core photonic crystal fiber-optic probes for Raman spectroscopy,” Opt. Lett.31, 1911–1913 (2006). [CrossRef] [PubMed]
  17. Z. Chen, A. Taflove, and V. Backman, “Photonic nanojet enhancement of backscattering of light by nanoparticles: a potential novel visible-light ultramicroscopy technique,” Opt. Express12, 1214–1220 (2004). [CrossRef] [PubMed]
  18. X. Li, Z. Chen, A. Taflove, and V. Backman, “Optical analysis of nanoparticles via enhanced backscattering facilitated by 3-D photonic nanojets,” Opt. Express13, 526–533 (2005). [CrossRef] [PubMed]
  19. P. Ferrand, J. Wenger, M. Pianta, H. Rigneault, A. Devilez, B. Stout, N. Bonod, and E. Popov, “Direct imaging of photonic nanojets,” Opt. Express16, 6930–6940 (2008). [CrossRef] [PubMed]
  20. A. Heifetz, S. C. Kong, A. V. Sahakian, A. Taflove, and V. Backman, “Photonic Nanojets,” J. Comput. Theor. Nanosci.6, 1979–1992 (2009). [CrossRef] [PubMed]
  21. D. Gérard, J. Wenger, A. Devilez, D. Gachet, B. Stout, N. Bonod, E. Popov, and H. Rigneault, “Strong electromagnetic confinement near dielectric microspheres to enhance single-molecule fluorescence,” Opt. Express16, 15297–15303 (2008). [CrossRef] [PubMed]
  22. J. Wenger, D. Gérard, H. Aouani, and H. Rigneault, “Disposable microscope objective lenses for fluorescence correlation spectroscopy using latex microspheres,” Anal. Chem.80, 6800–6804 (2008). [CrossRef] [PubMed]
  23. A. Darafsheh, A. Fardad, N. M. Fried, A. N. Antoszyk, H. S. Ying, and V. N. Astratov, “Contact focusing multimodal microprobes for ultraprecise laser tissue surgery,” Opt. Express19, 3440–3448 (2011). [CrossRef] [PubMed]
  24. S. Maiti, U. Haupts, and W. W. Webb, “Fluorescence correlation spectroscopy: diagnostics for sparse molecules,” Proc. Natl. Acad. Sci. U.S.A.94, 11753–11757 (1997). [CrossRef] [PubMed]
  25. E. Haustein and P. Schwille, “Single-molecule spectroscopic methods,” Curr. Opinion Struct. Biol.14, 531–540 (2004). [CrossRef]
  26. C.B. Müller, A. Loman, V. Pacheco, F. Koberling, D. Willbold, W. Richtering, and J. Enderlein, “Precise measurement of diffusion by multi-color dual-focus fluorescence correlation spectroscopy,” EPL83, 46001 (2008). [CrossRef]
  27. P. Kapusta, “Absolute diffusion coefficients: compilation of reference data for FCS calibration,” http://www.picoquant.com/technotes/appnotediffusioncoefficients.pdf
  28. V. Gerke and S. E. Moss, “Annexins: from structure to function,” Physiol. Rev.82, 331–371 (2002). [PubMed]
  29. M. Pitschke, R. Prior, M. Haupt, and D. Riesner, “Detection of single amyloid β-protein aggregates in the cerebrospinal fluid of Alzheimer’s patients by fluorescence correlation spectroscopy,” Nature Medicine4, 832–834 (1998). [CrossRef] [PubMed]
  30. N. Opitz, P. J. Rothwell, B. Oeke, and P. Schwille, “Single molecule FCS-based oxygen sensor (O2-FCSensor): a new intrinsically calibrated oxygen sensor utilizing fluorescence correlation spectroscopy (FCS) with single fluorescent molecule detection sensitivity,” Sensors and Actuators B96, 460–467 (2003). [CrossRef]
  31. F. H. C. Wong, D. S. Banks, A. Abu-Arish, and C. Fradin, “A Molecular Thermometer Based on Fluorescent Protein Blinking,” J. Am. Chem. Soc.129, 10302–10303 (2007). [CrossRef] [PubMed]
  32. J. Wenger, D. Gérard, P.-F. Lenne, H. Rigneault, J. Dintinger, T. W. Ebbesen, A. Boned, F. Conchonaud, and D. Marguet, “Dual-color fluorescence cross-correlation spectroscopy in a single nanoaperture : towards rapid multicomponent screening at high concentrations,” Opt. Express14, 12206–12216 (2006). [CrossRef] [PubMed]
  33. N. Ma, P. C. Ashok, D. J. Stevenson, F. J. Gunn-Moore, and K. Dholakia, “Integrated optical transfection system using a microlens fiber combined with microfluidic gene delivery,” Biomed. Opt. Express1, 694–705 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited