OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 27 — Dec. 17, 2012
  • pp: 28431–28436

Miniaturized broadband highly birefringent device with stereo rod-microfiber-air structure

Jun-long Kou, Ye Chen, Fei Xu, and Yan-qing Lu  »View Author Affiliations

Optics Express, Vol. 20, Issue 27, pp. 28431-28436 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (2333 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A wrapping-on-a-rod technique is presented and demonstrated successfully to realize broadband microfiber-based highly birefringent (Hi-Bi) devices with 3D geometry. By wrapping a circular microfiber (MF) on a Teflon-coated rod (2 mm in diameter), a large and broadband birefringence can be obtained utilizing a rod-microfiber-air (RMA) structure. Wavelength scanning method is used to measure the birefringence of the device. Results show that group birefringence as high as 10−3 can be achieved over 400 nm wavelength range. This compact element presents great potential in sensing and communication applications, as well as lab-on-a-rod devices.

© 2012 OSA

OCIS Codes
(060.2310) Fiber optics and optical communications : Fiber optics
(060.2420) Fiber optics and optical communications : Fibers, polarization-maintaining
(230.3990) Optical devices : Micro-optical devices

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: September 25, 2012
Revised Manuscript: October 31, 2012
Manuscript Accepted: November 14, 2012
Published: December 7, 2012

Jun-long Kou, Ye Chen, Fei Xu, and Yan-qing Lu, "Miniaturized broadband highly birefringent device with stereo rod-microfiber-air structure," Opt. Express 20, 28431-28436 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. T. Hosaka, K. Okamoto, T. Miya, Y. Sasaki, and T. Edahiro, “Low-loss single polarization fibres with asymmetrical strain birefringence,” Electron. Lett.17(15), 530–531 (1981). [CrossRef]
  2. M. P. Varnham, D. N. Payne, R. D. Birch, and E. J. Tarbox, “Single-polarization operation of highly birefringent bow-tie optical fibres,” Electron. Lett.19(7), 246–247 (1983). [CrossRef]
  3. V. Ramaswamy, R. H. Stolen, M. D. Divino, and W. Pleibel, “Birefringence in elliptically clad borosilicate single-mode fibers,” Appl. Opt.18(24), 4080–4084 (1979). [CrossRef] [PubMed]
  4. A. Kumar, V. Gupta, and K. Thyagarajan, “Geometrical birefringence of polished and D-shape fibers,” Opt. Commun.61(3), 195–198 (1987). [CrossRef]
  5. R. B. Dyott, J. R. Cozens, and D. G. Morris, “Preservation of polarisation in optical-fibre waveguides with elliptical cores,” Electron. Lett.15(13), 380–382 (1979). [CrossRef]
  6. X. Chen, M. J. Li, N. Venkataraman, M. T. Gallagher, W. A. Wood, A. M. Crowley, J. P. Carberry, L. A. Zenteno, and K. W. Koch, “Highly birefringent hollow-core photonic bandgap fiber,” Opt. Express12(16), 3888–3893 (2004). [CrossRef] [PubMed]
  7. J. L. Kou, M. Ding, J. Feng, Y. Q. Lu, F. Xu, and G. Brambilla, “Microfiber-based Bragg gratings for sensing applications: a review,” Sensors (Basel)12(7), 8861–8876 (2012). [CrossRef] [PubMed]
  8. M. Ding, P. Wang, and G. Brambilla, “Fast-response high-temperature microfiber coupler tip thermometer,” IEEE Photon. Technol. Lett.24(14), 1209–1211 (2012). [CrossRef]
  9. G. Brambilla, “Optical fibre nanowires and microwires: a review,” J. Opt.12(4), 043001 (2010). [CrossRef]
  10. J. L. Kou, J. Feng, L. Ye, F. Xu, and Y. Q. Lu, “Miniaturized fiber taper reflective interferometer for high temperature measurement,” Opt. Express18(13), 14245–14250 (2010). [CrossRef] [PubMed]
  11. J. L. Kou, S. J. Qiu, F. Xu, and Y. Q. Lu, “Demonstration of a compact temperature sensor based on first-order Bragg grating in a tapered fiber probe,” Opt. Express19(19), 18452–18457 (2011). [CrossRef] [PubMed]
  12. Y. Jung, G. Brambilla, K. Oh, and D. J. Richardson, “Highly birefringent silica microfiber,” Opt. Lett.35(3), 378–380 (2010). [CrossRef] [PubMed]
  13. L. Sun, J. Li, Y. Tan, X. Shen, X. Xie, S. Gao, and B. O. Guan, “Miniature highly-birefringent microfiber loop with extremely-high refractive index sensitivity,” Opt. Express20(9), 10180–10185 (2012). [CrossRef] [PubMed]
  14. H. Xuan, J. Ju, and W. Jin, “Highly birefringent optical microfibers,” Opt. Express18(4), 3828–3839 (2010). [CrossRef] [PubMed]
  15. Y. Jung, G. Brambilla, and D. J. Richardson, “Polarization-maintaining optical microfiber,” Opt. Lett.35(12), 2034–2036 (2010). [CrossRef] [PubMed]
  16. G. Wang, P. P. Shum, L. Tong, C. M. Li, and C. Lin, “Polarization effects in microfiber loop and knot resonators,” IEEE Photon. Technol. Lett.22(8), 586–588 (2010). [CrossRef]
  17. J. L. Kou, F. Xu, and Y. Q. Lu, “Highly birefringent slot-microfiber,” IEEE Photon. Technol. Lett.23(15), 1034–1036 (2011). [CrossRef]
  18. S. C. Rashleigh and R. Ulrich, “High birefringence in tension-coiled single-mode fibers,” Opt. Lett.5(8), 354–356 (1980). [CrossRef] [PubMed]
  19. Q. Bao, H. Zhang, B. Wang, Z. Ni, C. H. Y. X. Lim, Y. Wang, D. Y. Tang, and K. P. Loh, “Broadband graphene polarizer,” Nat. Photonics5(7), 411–415 (2011). [CrossRef]
  20. J. L. Kou, Z. D. Huang, G. Zhu, F. Xu, and Y. Q. Lu, “Wave guiding properties and sensitivity of D-shaped optical fiber microwire devices,” Appl. Phys. B102(3), 615–619 (2011). [CrossRef]
  21. O. Frazão, J. M. Baptista, and J. L. Santos, “Recent advances in high-birefringence fiber loop mirror sensors,” Sensors (Basel Switzerland)7(11), 2970–2983 (2007). [CrossRef]
  22. R. Ulrich, S. C. Rashleigh, and W. Eickhoff, “Bending-induced birefringence in single-mode fibers,” Opt. Lett.5(6), 273–275 (1980). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited