OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 27 — Dec. 17, 2012
  • pp: 28437–28446

Lasing properties of non-resonant single quantum dot-cavity system under incoherent excitation

Huan Guan, Peijun Yao, Wenhai Yu, Pei Wang, and Hai Ming  »View Author Affiliations


Optics Express, Vol. 20, Issue 27, pp. 28437-28446 (2012)
http://dx.doi.org/10.1364/OE.20.028437


View Full Text Article

Enhanced HTML    Acrobat PDF (1359 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Single quantum dot laser has earned extensive interest due to its peculiar properties, however, most of works are focused on the resonant case. In this paper, the lasing oscillation based on off-resonant quantum dot (QD)-cavity system is investigated detailedly through two-electrons QD model. By gradually increasing the pump rate, the typical lasing signatures are shown with and without detuning, include the spectral transition from multiple peaks to single peak, and antibunching to Poissonian distribution. It is also demonstrated how detuning factor strongly influence photon statistics and emission properties, specially, the side peak of spectra induced by the exchange energy (named “sub-peak”) will go across the main peak from left to right when the detuning is gradually increased, and, furthermore, we find the “sub-peak cross of spectra” will facilitate the lasing oscillation because of the existence of exchange energy.

© 2012 OSA

OCIS Codes
(140.3570) Lasers and laser optics : Lasers, single-mode
(270.5290) Quantum optics : Photon statistics
(140.3948) Lasers and laser optics : Microcavity devices
(250.5590) Optoelectronics : Quantum-well, -wire and -dot devices

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: September 26, 2012
Revised Manuscript: November 25, 2012
Manuscript Accepted: November 26, 2012
Published: December 7, 2012

Citation
Huan Guan, Peijun Yao, Wenhai Yu, Pei Wang, and Hai Ming, "Lasing properties of non-resonant single quantum dot-cavity system under incoherent excitation," Opt. Express 20, 28437-28446 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-27-28437


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. H. Mabuchi and A. Doherty, “Cavity quantum electrodynamics: Coherence in context,” Science298, 1372–1377 (2002). [CrossRef] [PubMed]
  2. G. JP Reithmaier, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. Keldysh, V. Kulakovskii, and A. TL Reinecke, “Strong coupling in a single quantum dot–semiconductor microcavity system,” Nature432, 197–200 (2004). [CrossRef] [PubMed]
  3. E. Peter, P. Senellart, D. Martrou, A. Lemaître, J. Hours, J. M. Gérard, and J. Bloch, “Exciton-photon strong-coupling regime for a single quantum dot embedded in a microcavity,” Phys. Rev. Lett.95, 067401 (2005). [CrossRef] [PubMed]
  4. S. Noda, “Seeking the Ultimate Nanolaser,” Science314, 260–261 (2006). [CrossRef] [PubMed]
  5. E. Moreau, I. Robert, J. Gérard, I. Abram, L. Manin, and V. Thierry-Mieg, “Single-mode solid-state single photon source based on isolated quantum dots in pillar microcavities,” Appl. Phys. Lett.79, 2865–2867 (2001). [CrossRef]
  6. C. Santori, D. Fattal, J. Vuckovic, G. Solomon, and Y. Yamamoto, “Indistinguishable photons from a single-photon device,” Nature419, 594–597 (2002). [CrossRef] [PubMed]
  7. K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atature, S. Gulde, S. Falt, E. L. Hu, and A. Imamoglu, “Quantum nature of a strongly coupled single quantum dot-cavity system,” Nature445, 896–899 (2007). [CrossRef] [PubMed]
  8. P. Yao, P. Pathak, V. Rao, and S. Hughes, “Theory and design of chip-based quantum light sources using planar photonic crystals,” Proc. SPIE7211, 72110B (2009). [CrossRef]
  9. T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. Gibbs, G. Rupper, C. Ell, O. Shchekin, and D. Deppe, “Vacuum rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature432, 200–203 (2004). [CrossRef] [PubMed]
  10. Z. G. Xie, S. Götzinger, W. Fang, H. Cao, and G. S. Solomon, “Influence of a single quantum dot state on the characteristics of a microdisk laser,” Phys. Rev. Lett.98, 117401 (2007). [CrossRef] [PubMed]
  11. S. Reitzenstein, T. Heindel, C. Kistner, A. Rahimi-Iman, C. Schneider, S. Höfling, and A. Forchel, “Low threshold electrically pumped quantum dot-micropillar lasers,” Appl. Phys. Lett.93, 061104 (2008). [CrossRef]
  12. M. Nomura, N. Kumagai, S. Iwamoto, Y. Ota, and Y. Arakawa, “Photonic crystal nanocavity laser with a single quantum dot gain,” Opt. Express17, 15975–15982 (2009). [CrossRef] [PubMed]
  13. M. Nomura, N. Kumagai, S. Iwamoto, Y. Ota, and Y. Arakawa, “Laser oscillation in a strongly coupled single-quantum-dot–nanocavity system,” Nat. Phys.6, 279–283 (2010). [CrossRef]
  14. F. P. Laussy, E. del Valle, and C. Tejedor, “Strong coupling of quantum dots in microcavities,” Phys. Rev. Lett.101, 083601 (2008). [CrossRef] [PubMed]
  15. A. Laucht, N. Hauke, J. M. Villas-Bôas, F. Hofbauer, G. Böhm, M. Kaniber, and J. J. Finley, “Dephasing of exciton polaritons in photoexcited InGaAs quantum dots in GaAs nanocavities,” Phys. Rev. Lett.103, 087405 (2009). [CrossRef] [PubMed]
  16. P. Yao, P. K. Pathak, E. Illes, S. Hughes, S. Münch, S. Reitzenstein, P. Franeck, A. Löffler, T. Heindel, S. Höfling, L. Worschech, and A. Forchel, “Nonlinear photoluminescence spectra from a quantum-dot cavity system: Interplay of pump-induced stimulated emission and anharmonic cavity QED,” Phys. Rev. B81, 033309 (2010). [CrossRef]
  17. S. Ritter, P. Gartner, C. Gies, and F. Jahnke, “Emission properties and photon statistics of a single quantum dot laser,” Opt. Express18, 9909–9921 (2010). [CrossRef] [PubMed]
  18. C. Gies, M. Florian, P. Gartner, and F. Jahnke, “The single quantum dot-laser: lasing and strong coupling in the high-excitation regime,” Opt. Express19, 14370–14388 (2011). [CrossRef] [PubMed]
  19. M. Rontani, F. Rossi, F. Manghi, and E. Molinari, “Coulomb correlation effects in semiconductor quantum dots: The role of dimensionality,” Phys. Rev. B59, 10165–10175 (1999). [CrossRef]
  20. N. Baer, P. Gartner, and F. Jahnke, “Coulomb effects in semiconductor quantum dots,” Eur. Phys. J. B42, 231–237 (2004). [CrossRef]
  21. E. Peter, J. Hours, P. Senellart, A. Vasanelli, A. Cavanna, J. Bloch, and J. M. Gérard, “Phonon sidebands in exciton and biexciton emission from single GaAs quantum dots,” Phys. Rev. B69, 041307 (2004). [CrossRef]
  22. J. Y. Bigot, M. T. Portella, R. W. Schoenlein, J. E. Cunningham, and C. V. Shank, “Two-dimensional carrier-carrier screening in a quantum well,” Phys. Rev. Lett.67, 636–639 (1991). [CrossRef] [PubMed]
  23. M. Lorke, J. Seebeck, T. R. Nielsen, P. Gartner, and F. Jahnke, “Excitation dependence of the homogeneous linewidths in quantum dots,” Phys. Stat. Sol. (c)3, 2393–2396 (2006). [CrossRef]
  24. T. Tawara, I. Suemune, and H. Kumano, “Strong coupling of CdS quantum dots to confined photonic modes in ZnSe-based microcavities,” Physica E13, 403–407 (2002). [CrossRef]
  25. G. Björk, A. Karlsson, and Y. Yamamoto, “Definition of a laser threshold,” Phys. Rev. A50, 1675–1680 (1994). [CrossRef] [PubMed]
  26. G. Björk, A. Karlsson, and Y. Yamamoto, “Analysis of semiconductor microcavity lasers using rate equations,” IEEE J. Quantum Electron.27, 2386–2396 (1991). [CrossRef]
  27. Y. Mu and C. M. Savage, “One-atom lasers,” Phys. Rev. A46, 5944–5954 (1992). [CrossRef] [PubMed]
  28. A. Auffèves, D. Gerace, J. M. Gérard, M. F. Santos, L. C. Andreani, and J.-P. Poizat, “Controlling the dynamics of a coupled atom-cavity system by pure dephasing,” Phys. Rev. B81, 245419 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited