OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 27 — Dec. 17, 2012
  • pp: 28447–28454

Phase fluctuation compensation for long-term transfer of stable radio frequency over fiber link

Bo Ning, Peng Du, Dong Hou, and Jianye Zhao  »View Author Affiliations


Optics Express, Vol. 20, Issue 27, pp. 28447-28454 (2012)
http://dx.doi.org/10.1364/OE.20.028447


View Full Text Article

Acrobat PDF (1742 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We developed a new radio frequency dissemination system based on an optical fiber link. A 1.55 μm mode-locked fiber laser was used as optical transmitter in the system. To actively reduce the phase fluctuation induced by the fiber length variations with high resolution, we proposed a novel compensation technique. In our technique, we directly control the phase of optical pulses generated by the laser to compensate the fluctuation. The phase-controlling method is based on both pump power modulation and cavity length adjusting. We performed the transfer in a 22-km outdoor fiber link, with a transfer stability of 3.7 × 10−14 at 1 s and 6.6 × 10−18 at 16000 s. The integrated timing jitter in 24 hours was reduced from 14 ps to 35 fs.

© 2012 OSA

OCIS Codes
(060.2360) Fiber optics and optical communications : Fiber optics links and subsystems
(140.4050) Lasers and laser optics : Mode-locked lasers
(350.4010) Other areas of optics : Microwaves

ToC Category:
Fiber Optics and Optical Communications

History
Original Manuscript: September 26, 2012
Revised Manuscript: November 15, 2012
Manuscript Accepted: November 25, 2012
Published: December 7, 2012

Citation
Bo Ning, Peng Du, Dong Hou, and Jianye Zhao, "Phase fluctuation compensation for long-term transfer of stable radio frequency over fiber link," Opt. Express 20, 28447-28454 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-27-28447


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. J. Levine, “A review of time and frequency transfer methods,” Metrologia45(6), S162–S174 (2008). [CrossRef]
  2. S. M. Foreman, K. W. Holman, D. D. Hudson, D. J. Jones, and J. Ye, “Remote transfer of ultrastable frequency references via fiber networks,” Rev. Sci. Instrum.78(2), 021101 (2007). [CrossRef] [PubMed]
  3. K. Minoshima and H. Matsumoto, “In-situ measurements of shapes and thickness of optical parts by femtosecond two-color interferometry,” Opt. Commun.138(1-3), 6–10 (1997). [CrossRef]
  4. J. Ye and S. T. Cundiff, Femtosecond Optical Frequency Comb: Principle, Operation, and Applications (Kluwer Academic Publishers / Springer, 2004).
  5. J. F. Cliche and B. Shillue, “Precision timing control for radioastronomy: maintaining femtosecond synchronization in the Atacama Large Millimeter Array,” IEEE Contr. Syst. Mag.26(1), 19–26 (2006). [CrossRef]
  6. Y. F. Chen, J. Jiang, and D. J. Jones, “Remote distribution of a mode-locked pulse train with sub 40-as jitter,” Opt. Express14(25), 12134–12144 (2006). [CrossRef] [PubMed]
  7. E. Allaria, C. Callegari, D. Cocco, W. M. Fawley, M. Kiskinova, C. Masciovecchio, and F. Parmigiani, “The FERMI@Elettra free-electron-laser source for coherent x-ray physics: photon properties, beam transport system and applications,” New J. Phys.12(7), 075002 (2010). [CrossRef]
  8. P. R. Bolton, “Noninvasive laser probing of ultrashort single electron bunches for accelerator and light source development,” Int. J. Mod. Phys. B21(03n04), 527–539 (2007). [CrossRef]
  9. L. S. Ma, P. Jungner, J. Ye, and J. L. Hall, “Delivering the same optical frequency at two places: accurate cancellation of phase noise introduced by an optical fiber or other time-varying path,” Opt. Lett.19(21), 1777–1779 (1994). [CrossRef] [PubMed]
  10. K. W. Holman, D. J. Jones, D. D. Hudson, and J. Ye, “Precise frequency transfer through a fiber network by use of 1.5-microm mode-locked sources,” Opt. Lett.29(13), 1554–1556 (2004). [CrossRef] [PubMed]
  11. K. W. Holman, D. D. Hudson, J. Ye, and D. J. Jones, “Remote transfer of a high-stability and ultralow-jitter timing signal,” Opt. Lett.30(10), 1225–1227 (2005). [CrossRef] [PubMed]
  12. J. Kim, J. Chen, Z. Zhang, F. N. C. Wong, F. X. Kärtner, F. Loehl, and H. Schlarb, “Long-term femtosecond timing link stabilization using a single-crystal balanced cross correlator,” Opt. Lett.32(9), 1044–1046 (2007). [CrossRef] [PubMed]
  13. J. Kim, J. A. Cox, J. Chen, and F. X. Kartner, “Drift-free femtosecond timing synchronization of remote optical and microwave sources,” Nat. Photonics2(12), 733–736 (2008). [CrossRef]
  14. G. Marra, H. S. Margolis, S. N. Lea, and P. Gill, “High-stability microwave frequency transfer by propagation of an optical frequency comb over 50 km of optical fiber,” Opt. Lett.35(7), 1025–1027 (2010). [CrossRef] [PubMed]
  15. G. Marra, R. Slavík, H. S. Margolis, S. N. Lea, P. Petropoulos, D. J. Richardson, and P. Gill, “High-resolution microwave frequency transfer over an 86-km-long optical fiber network using a mode-locked laser,” Opt. Lett.36(4), 511–513 (2011). [CrossRef] [PubMed]
  16. D. Hou, P. Li, C. Liu, J. Zhao, and Z. Zhang, “Long-term stable frequency transfer over an urban fiber link using microwave phase stabilization,” Opt. Express19(2), 506–511 (2011). [CrossRef] [PubMed]
  17. D. D. Hudson, S. M. Foreman, S. T. Cundiff, and J. Ye, “Synchronization of mode-locked femtosecond lasers through a fiber link,” Opt. Lett.31(13), 1951–1953 (2006). [CrossRef] [PubMed]
  18. A. Yariv, Quantum Electronics Third Edition (John Wiley & Sons, 1989).
  19. A. Maitland and M. H. Dumn, Laser Physics (North-Holland Publishing Company, 1969).
  20. N. Haverkamp, H. Hundertmark, C. Fallnich, and H. R. Telle, “Frequency stabilization of mode-locked Erbium fiber lasers using pump power control,” Appl. Phys. B78(3-4), 321–324 (2004). [CrossRef]
  21. W. K. Tan, H. Y. Wong, A. E. Kelly, M. Sorel, J. H. Marsh, and A. C. Bryce, “Temperature behaviour of pulse repetition frequency in passively mode-locked InGaAsP/InP laser diode - Experimental results and simple model,” IEEE J. Sel. Top. Quantum Electron.13(5), 1209–1214 (2007). [CrossRef]
  22. E. N. Ivanov, S. A. Diddams, and L. Hollberg, “Analysis of noise mechanisms limiting the frequency stability of microwave signals generated with a femtosecond laser,” IEEE J. Sel. Top. Quantum Electron.9(4), 1059–1065 (2003). [CrossRef]
  23. G. Marra, H. S. Margolis, and D. J. Richardson, “Dissemination of an optical frequency comb over fiber with 3 × 10-18 fractional accuracy,” Opt. Express20(2), 1775–1782 (2012). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited