OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 27 — Dec. 17, 2012
  • pp: 28479–28484

Graphene-assisted control of coupling between optical waveguides

Andrea Locatelli, Antonio-Daniele Capobianco, Michele Midrio, Stefano Boscolo, and Costantino De Angelis  »View Author Affiliations


Optics Express, Vol. 20, Issue 27, pp. 28479-28484 (2012)
http://dx.doi.org/10.1364/OE.20.028479


View Full Text Article

Enhanced HTML    Acrobat PDF (1234 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The unique properties of optical waveguides electrically controlled by means of graphene layers are investigated. We demonstrate that, thanks to tunable losses induced by graphene layers, a careful design of silicon on silica ridge waveguides can be used to explore passive PT-symmetry breaking in directional couplers. We prove that the exceptional point of the system can be probed by varying the applied voltage and we thus propose very compact photonic structures which can be exploited to control coupling between waveguides and to tailor discrete diffraction in arrays.

© 2012 OSA

OCIS Codes
(050.1940) Diffraction and gratings : Diffraction
(130.2790) Integrated optics : Guided waves
(230.2090) Optical devices : Electro-optical devices
(250.7360) Optoelectronics : Waveguide modulators
(130.4815) Integrated optics : Optical switching devices

ToC Category:
Integrated Optics

History
Original Manuscript: October 12, 2012
Revised Manuscript: November 14, 2012
Manuscript Accepted: November 14, 2012
Published: December 7, 2012

Citation
Andrea Locatelli, Antonio-Daniele Capobianco, Michele Midrio, Stefano Boscolo, and Costantino De Angelis, "Graphene-assisted control of coupling between optical waveguides," Opt. Express 20, 28479-28484 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-27-28479


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science306, 666–669 (2004). [CrossRef] [PubMed]
  2. K. Kim, J. Y. Choi, T. Kim, S. H. Cho, and H. J. Chung, “A role for graphene in silicon-based semiconductor devices,” Nature (London)479, 338–344 (2011). [CrossRef]
  3. A. Vakil and N. Engheta, “Transformation optics using graphene,” Science332, 1291–1294 (2011). [CrossRef] [PubMed]
  4. F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photon.4, 611–622 (2010). [CrossRef]
  5. M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature (London)474, 64–67 (2011). [CrossRef]
  6. M. Liu, X. Yin, and X. Zhang, “Double-layer graphene optical modulator,” Nano Lett.12, 1482–1485 (2012). [CrossRef] [PubMed]
  7. M. Midrio, S. Boscolo, M. Moresco, M. Romagnoli, C. De Angelis, A. Locatelli, and A.-D. Capobianco, “Graphene-assisted critically-coupled optical ring modulator,” Opt. Express20, 23144–23155 (2012). [CrossRef]
  8. Q. Bao, H. Zhang, B. Wang, Z. Ni, C. Lim, Y. Wang, D. Y. Tang, and K. P. Loh, “Broadband graphene polarizer,” Nat. Photon.5, 411–415 (2011). [CrossRef]
  9. J. T. Kim and C. G. Choi, “Graphene-based polymer waveguide polarizer,” Opt. Express20, 3556–3562 (2012). [CrossRef] [PubMed]
  10. Z. Q. Li, E. A. Henriksen, Z. Jiang, Z. Hao, M. C. Martin, P. Kim, H. L. Stormer, and D. N. Basov, “Dirac charge dynamics in graphene by infrared spectroscopy,” Nat. Phys.4, 532–535 (2008). [CrossRef]
  11. S. Klaiman, U. Gunther, and N. Moiseyev, “Visualization of branch points in PT-symmetric waveguides,” Phys. Rev. Lett.101, 080402 (2008). [CrossRef] [PubMed]
  12. A. Guo, G. J. Salamo, D. Duchesne, R. Morandotti, M. Volatier-Ravat, V. Aimez, G. A. Siviloglou, and D. N. Christodoulides, “Observation of PT-symmetry breaking in complex optical potentials,” Phys. Rev. Lett.103, 093902 (2009). [CrossRef] [PubMed]
  13. S. Yu, G. X. Piao, D. R. Mason, S. In, and N. Park, “Spatiospectral separation of exceptional points in PT-symmetric optical potentials,” Phys. Rev. A86, 031802 (2012). [CrossRef]
  14. G. W. Hanson, “Dyadic Green’s functions for an anisotropic, non-local model of biased graphene,” IEEE Trans. Antennas Propagat.56, 747–757 (2008). [CrossRef]
  15. D. N. Christodoulides and R. I. Joseph, “Discrete self-focusing in nonlinear arrays of coupled waveguides,” Opt. Lett.13, 794–796 (1988). [CrossRef] [PubMed]
  16. T. Pertsch, T. Zentgraf, U. Peschel, A. Brauer, and F. Lederer, “Anomalous refraction and diffraction in discrete optical systems,” Phys. Rev. Lett.88, 093901 (2002). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited