OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 27 — Dec. 17, 2012
  • pp: 28500–28506

Development of high-efficiency etalons with an optical shutter for terahertz laser pulses

Masaaki Tsubouchi and Takayuki Kumada  »View Author Affiliations

Optics Express, Vol. 20, Issue 27, pp. 28500-28506 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (2554 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A high-efficiency etalon operated in the terahertz (THz) frequency region has been proposed to generate a THz pulse train. To achieve high-conversion efficiency to the pulse train, an optical shutter is employed in this etalon. The etalon is composed of a silicon (Si) plate as an input coupler and an indium-tin-oxide (ITO)-coated glass plate as an output coupler. After THz light is introduced into the etalon through the Si plate, the optical shutter pulse irradiates the Si surface to generate a photoconductive layer that acts as a highly reflective mirror for THz light. A THz pulse train and its comb-shaped spectrum have been realized by the use of the proposed etalon with the optical shutter. A finesse F of 9.04 was achieved at the free spectral range of 75 GHz in this etalon.

© 2012 OSA

OCIS Codes
(120.2230) Instrumentation, measurement, and metrology : Fabry-Perot
(320.5540) Ultrafast optics : Pulse shaping
(260.7120) Physical optics : Ultrafast phenomena

ToC Category:
Ultrafast Optics

Original Manuscript: October 12, 2012
Revised Manuscript: November 26, 2012
Manuscript Accepted: November 26, 2012
Published: December 7, 2012

Masaaki Tsubouchi and Takayuki Kumada, "Development of high-efficiency etalons with an optical shutter for terahertz laser pulses," Opt. Express 20, 28500-28506 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. A. Fülöp, L. Pálfalvi, S. Klingebiel, G. Almási, F. Krausz, S. Karsch, and J. Hebling, “Generation of sub-mJ terahertz pulses by optical rectification,” Opt. Lett.37(4), 557–559 (2012). [CrossRef] [PubMed]
  2. M. Nagai, E. Matsubara, and M. Ashida, “High-efficiency terahertz pulse generation via optical rectification by suppressing stimulated Raman scattering process,” Opt. Express20(6), 6509–6514 (2012). [CrossRef] [PubMed]
  3. H. Hirori, A. Doi, F. Blanchard, and K. Tanaka, “Single-cycle terahertz pulses with amplitudes exceeding 1 MV/cm generated by optical rectification in LiNbO3,” Appl. Phys. Lett.98(9), 091106 (2011). [CrossRef]
  4. M. C. Hoffmann, J. Hebling, H. Y. Hwang, K. L. Yeh, and K. A. Nelson, “Impact ionization in InSb probed by terahertz pump-terahertz probe spectroscopy,” Phys. Rev. B79(16), 161201 (2009). [CrossRef]
  5. K. Tanaka, H. Hirori, and M. Nagai, “THz nonlinear spectroscpoy of solids,” IEEE Trans. Terahertz Sci. Technol.1(1), 301–312 (2011). [CrossRef]
  6. M. C. Hoffmann, N. C. Brandt, H. Y. Hwang, K. L. Yeh, and K. A. Nelson, “Terahertz Kerr effect,” Appl. Phys. Lett.95(23), 231105 (2009). [CrossRef]
  7. S. Fleischer, Y. Zhou, R. W. Field, and K. A. Nelson, “Molecular orientation and alignment by intense single-cycle THz pulses,” Phys. Rev. Lett.107(16), 163603 (2011). [CrossRef] [PubMed]
  8. R. Shimano, S. Watanabe, and R. Matsunaga, “Intense terahertz pulse-induced nonlinear responses in carbon nanotubes,” J. Infrared Millim. Terahertz Waves33(8), 861–869 (2012). [CrossRef]
  9. C. C. Qin, Y. Tang, Y. M. Wang, and B. Zhang, “Field-free orientation of CO by a terahertz few-cycle pulse,” Phys. Rev. A85(5), 053415 (2012). [CrossRef]
  10. M. Lapert and D. Sugny, “Field-free molecular orientation by terahertz laser pulses at high temperature,” Phys. Rev. A85(6), 063418 (2012). [CrossRef]
  11. M. C. Hoffmann, J. Hebling, H. Y. Hwang, K. L. Yeh, and K. A. Nelson, “THz-pump/THz-probe spectroscopy of semiconductors at high field strengths [Invited],” J. Opt. Soc. Am. B26(9), A29–A34 (2009). [CrossRef]
  12. H. Umeda, M. Takagi, S. Yamada, S. Koseki, and Y. Fujimura, “Quantum control of molecular chirality: Optical isomerization of difluorobenzo[c]phenanthrene,” J. Am. Chem. Soc.124(31), 9265–9271 (2002). [CrossRef] [PubMed]
  13. T. T. Qi, Y. H. Shin, K. L. Yeh, K. A. Nelson, and A. M. Rappe, “Collective coherent control: Synchronization of polarization in ferroelectric PbTiO3 by Shaped THz Fields,” Phys. Rev. Lett.102(24), 247603 (2009). [CrossRef] [PubMed]
  14. Y. Q. Liu, S. G. Park, and A. M. Weiner, “Terahertz waveform synthesis via optical pulse shaping,” IEEE J. Sel. Top. Quantum Electron.2(3), 709–719 (1996). [CrossRef]
  15. J. Y. Sohn, Y. H. Ahn, D. J. Park, E. Oh, and D. S. Kim, “Tunable terahertz generation using femtosecond pulse shaping,” Appl. Phys. Lett.81(1), 13–15 (2002). [CrossRef]
  16. K. L. Yeh, J. Hebling, M. C. Hoffmann, and K. A. Nelson, “Generation of high average power 1 kHz shaped THz pulses via optical rectification,” Opt. Commun.281(13), 3567–3570 (2008). [CrossRef]
  17. S. A. Jewell, E. Hendry, T. H. Isaac, and J. R. Sambles, “Tuneable Fabry-Perot etalon for terahertz radiation,” New J. Phys.10(3), 033012 (2008). [CrossRef]
  18. T. Bauer, J. S. Kolb, T. Loffler, E. Mohler, H. G. Roskos, and U. C. Pernisz, “Indium-tin-oxide-coated glass as dichroic mirror for far-infrared electromagnetic radiation,” J. Appl. Phys.92(4), 2210–2212 (2002). [CrossRef]
  19. Z. B. Zhou, R. Q. Cui, Q. J. Pang, Y. D. Wang, F. Y. Meng, T. T. Sun, Z. M. Ding, and X. B. Yu, “Preparation of indium tin oxide films and doped tin oxide films by an ultrasonic spray CVD process,” Appl. Surf. Sci.172(3-4), 245–252 (2001). [CrossRef]
  20. J. Hebling, G. Almasi, I. Z. Kozma, and J. Kuhl, “Velocity matching by pulse front tilting for large area THz-pulse generation,” Opt. Express10(21), 1161–1166 (2002). [CrossRef] [PubMed]
  21. A. Nahata, A. S. Weling, and T. F. Heinz, “A wideband coherent terahertz spectroscopy system using optical rectification and electro-optic sampling,” Appl. Phys. Lett.69(16), 2321–2323 (1996). [CrossRef]
  22. Q. Wu and X. C. Zhang, “Design and characterization of traveling-wave electrooptic terahertz sensors,” IEEE J. Sel. Top. Quantum Electron.2(3), 693–700 (1996). [CrossRef]
  23. D. Turchinovich and J. I. Dijkhuis, “Performance of combined <100>-<110> ZnTe crystals in an amplified THz time-domain spectrometer,” Opt. Commun.270(1), 96–99 (2007). [CrossRef]
  24. E. D. Palik, ed., Handbook of Optical Constants (Academic Press, Inc., 1991), Vol. II, p. 547.
  25. H. A. Weakliem and D. Redfield, “Temperature dependence of the optical properties of silicon,” J. Appl. Phys.50(3), 1491–1493 (1979). [CrossRef]
  26. M. Nagai and M. Kuwata-Gonokami, “Time-resolved reflection spectroscopy of the spatiotemporal dynamics of photo-excited carriers in Si and GaAs,” J. Phys. Soc. Jpn.71(9), 2276–2279 (2002). [CrossRef]
  27. A. J. Gatesman, J. Waldman, M. Ji, C. Musante, and S. Yagvesson, “An anti-reflection coating for silicon optics at terahertz frequencies,” IEEE Microw. Guid. Wave Lett.10(7), 264–266 (2000). [CrossRef]
  28. Y. W. Chen, P. Y. Han, and X. C. Zhang, “Tunable broadband antireflection structures for silicon at terahertz frequency,” Appl. Phys. Lett.94(4), 041106 (2009). [CrossRef]
  29. S. Boubanga-Tombet, S. Chan, T. Watanabe, A. Satou, V. Ryzhii, and T. Otsuji, “Ultrafast carrier dynamics and terahertz emission in optically pumped graphene at room temperature,” Phys. Rev. B85(3), 035443 (2012). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited