OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 27 — Dec. 17, 2012
  • pp: 28518–28523

Adaptive liquid lens actuated by liquid crystal pistons

Su Xu, Hongwen Ren, and Shin-Tson Wu  »View Author Affiliations

Optics Express, Vol. 20, Issue 27, pp. 28518-28523 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1078 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



An adaptive liquid lens actuated by liquid crystal (LC) pistons is demonstrated. It adopts fluid pressure introduced by the reciprocating movement of LC droplets to regulate the liquid-air interface which, in turn, changes the optical power of the resultant liquid lens. The competitive features are compact size, simple fabrication, good optical performance, reasonably fast response time and low power consumption. Since the actuation power can be enhanced by increasing the number of LC pistons rather than the operating voltages, it is possible to significantly actuate a large-aperture lens or lens array at a relatively low operating voltage.

© 2012 OSA

OCIS Codes
(010.1080) Atmospheric and oceanic optics : Active or adaptive optics
(160.3710) Materials : Liquid crystals
(220.3620) Optical design and fabrication : Lens system design
(230.2090) Optical devices : Electro-optical devices

ToC Category:
Adaptive Optics

Original Manuscript: October 22, 2012
Revised Manuscript: November 26, 2012
Manuscript Accepted: November 29, 2012
Published: December 7, 2012

Su Xu, Hongwen Ren, and Shin-Tson Wu, "Adaptive liquid lens actuated by liquid crystal pistons," Opt. Express 20, 28518-28523 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. N. Sugiura and S. Morita, “Variable-focus liquid-filled optical lens,” Appl. Opt.32(22), 4181–4186 (1993). [CrossRef] [PubMed]
  2. H. Oku and M. Ishikawa, “High-speed liquid lens with 2 ms response and 80.3 nm root-mean-square wavefront error,” Appl. Phys. Lett.94(22), 221108 (2009). [CrossRef]
  3. H. Ren, D. Fox, P. A. Anderson, B. Wu, and S.-T. Wu, “Tunable-focus liquid lens controlled using a servo motor,” Opt. Express14(18), 8031–8036 (2006). [CrossRef] [PubMed]
  4. C.-S. Liu and P. D. Lin, “Miniaturized auto-focusing VCM actuator with zero holding current,” Opt. Express17(12), 9754–9763 (2009). [CrossRef] [PubMed]
  5. H.-M. Son, M. Y. Kim, and Y.-J. Lee, “Tunable-focus liquid lens system controlled by antagonistic winding-type SMA actuator,” Opt. Express17(16), 14339–14350 (2009). [CrossRef] [PubMed]
  6. A. Pouydebasque, C. Bridoux, F. Jacquet, S. Moreau, E. Sage, D. Saint-Patrice, C. Bouvier, C. Kopp, G. Marchand, S. Bolis, N. Sillon, and E. Vigier-Blanc, “Varifocal liquid lenses with integrated actuator, high focusing power and low operating voltage fabricated on 200 mm wafers,” Sens. Actuators A Phys.172(1), 280–286 (2011). [CrossRef]
  7. W. Zhang, K. Aljasem, H. Zappe, and A. Seifert, “Completely integrated, thermo-pneumatically tunable microlens,” Opt. Express19(3), 2347–2362 (2011). [CrossRef] [PubMed]
  8. S. W. Lee and S. S. Lee, “Focal tunable liquid lens integrated with an electromagnetic actuator,” Appl. Phys. Lett.90(12), 121129 (2007). [CrossRef]
  9. B. A. Malouin, M. J. Vogel, J. D. Olles, L. Cheng, and A. H. Hirsa, “Electromagnetic liquid pistons for capillarity-based pumping,” Lab Chip11(3), 393–397 (2011). [CrossRef] [PubMed]
  10. H.-C. Cheng, S. Xu, Y. Liu, S. Levi, and S.-T. Wu, “Adaptive mechanical-wetting lens actuated by ferrofluids,” Opt. Commun.284(8), 2118–2121 (2011). [CrossRef]
  11. W.-S. Seo, K. Yoshida, S. Yokota, and K. Edamura, “A high performance planar pump using electro-conjugate fluid with improved electrode patterns,” Sens. Actuators A Phys.134(2), 606–614 (2007). [CrossRef]
  12. S. I. Son, D. Pugal, T. Hwang, H. R. Choi, J. C. Koo, Y. Lee, K. Kim, and J.-D. Nam, “Electromechanically driven variable-focus lens based on transparent dielectric elastomer,” Appl. Opt.51(15), 2987–2996 (2012). [CrossRef] [PubMed]
  13. S. Xu, H. Ren, Y.-J. Lin, M. G. J. Moharam, S.-T. Wu, and N. Tabiryan, “Adaptive liquid lens actuated by photo-polymer,” Opt. Express17(20), 17590–17595 (2009). [CrossRef] [PubMed]
  14. C. A. López, C.-C. Lee, and A. H. Hirsa, “Electrochemically activated adaptive liquid lens,” Appl. Phys. Lett.87(13), 134102 (2005). [CrossRef]
  15. L. Miccio, A. Finizio, S. Grilli, V. Vespini, M. Paturzo, S. De Nicola, and P. Ferraro, “Tunable liquid microlens arrays in electrode-less configuration and their accurate characterization by interference microscopy,” Opt. Express17(4), 2487–2499 (2009). [CrossRef] [PubMed]
  16. L. Dong, A. K. Agarwal, D. J. Beebe, and H. Jiang, “Adaptive liquid microlenses activated by stimuli-responsive hydrogels,” Nature442(7102), 551–554 (2006). [CrossRef] [PubMed]
  17. M. Vallet, B. Berge, and L. Vovelle, “Electrowetting of water and aqueous solutions on poly(ethylene terephthalate) insulating films,” Polymer37(12), 2465–2470 (1996). [CrossRef]
  18. C.-C. Cheng and J. A. Yeh, “Dielectrically actuated liquid lens,” Opt. Express15(12), 7140–7145 (2007). [CrossRef] [PubMed]
  19. H. Ren, S. Xu, and S.-T. Wu, “Voltage-expandable liquid crystal surface,” Lab Chip11(20), 3426–3430 (2011). [CrossRef] [PubMed]
  20. P. Penfield and H. A. Haus, “Electrodynamics of moving media”, (MIT, 1967).
  21. S. Xu, H. Ren, Y. Liu, and S. T. Wu, “Color displays based on voltage-stretchable liquid crystal droplet,” J. Disp. Technol.8(6), 336–340 (2012). [CrossRef]
  22. D. Zhu, C. Li, X. Zeng, and H. Jiang, “Tunable-focus microlens arrays on curved surfaces,” Appl. Phys. Lett.96(8), 081111–081113 (2010). [CrossRef]
  23. H. Ren, S. Xu, and S. T. Wu, “Liquid crystal pump,” Lab Chip13(1), 100–105 (2013). [CrossRef] [PubMed]
  24. S. Xu, Y. Liu, H. Ren, and S.-T. Wu, “A novel adaptive mechanical-wetting lens for visible and near infrared imaging,” Opt. Express18(12), 12430–12435 (2010). [CrossRef] [PubMed]
  25. H. Ren, S. Xu, and S.-T. Wu, “Effects of gravity on the shape of liquid droplets,” Opt. Commun.283(17), 3255–3258 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

Supplementary Material

» Media 1: MOV (88 KB)     
» Media 2: MOV (520 KB)     
» Media 3: MOV (4059 KB)     
» Media 4: MOV (190 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited