OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 27 — Dec. 17, 2012
  • pp: 28573–28585

Terahertz difference-frequency generation by tilted amplitude front excitation

M. I. Bakunov, M. V. Tsarev, and E. A. Mashkovich  »View Author Affiliations

Optics Express, Vol. 20, Issue 27, pp. 28573-28585 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (2530 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



To circumvent a velocity mismatch between optical pump and terahertz waves in electro-optic crystals, we propose to use dual-wavelength optical beams tilted with respect to their planes of equal amplitude. The tilt is achieved by transmission of a dual-wavelength laser beam through a diffraction grating placed on the crystal boundary. The proposed technique extends optical rectification of tilted-front femtosecond laser pulses to difference-frequency generation with longer (nanosecond) pulses. Our analysis of the technique for LiNbO3 pumped at 1.3 μm and GaAs pumped at 1.55 μm shows its efficiency.

© 2012 OSA

OCIS Codes
(260.3090) Physical optics : Infrared, far
(190.4223) Nonlinear optics : Nonlinear wave mixing

ToC Category:
Nonlinear Optics

Original Manuscript: October 31, 2012
Revised Manuscript: November 26, 2012
Manuscript Accepted: November 26, 2012
Published: December 10, 2012

M. I. Bakunov, M. V. Tsarev, and E. A. Mashkovich, "Terahertz difference-frequency generation by tilted amplitude front excitation," Opt. Express 20, 28573-28585 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. T. Yajima and K. Inoue, “Submillimeter-wave generation by optical difference-frequency mixing of ruby R1 and R2 laser lines,” Phys. Lett. A26, 281–282 (1968). [CrossRef]
  2. T. Yajima and K. Inoue, “Submillimeter-wave generation by difference-frequency mixing of ruby laser lines in ZnTe,” IEEE J. Quantum Electron.5, 140–146 (1969). [CrossRef]
  3. T. Taniuchi and H. Nakanishi, “Collinear phase-matched terahertz-wave generation in GaP crystal using a dual-wavelength optical parametric oscillator,” J. Appl. Phys.95, 7588–7591 (2004). [CrossRef]
  4. W. Shi, Y. J. Ding, N. Fernelius, and K. Vodopyanov, “Efficient, tunable, and coherent 0.18–5.27-THz source based on GaSe crystal,” Opt. Lett.27, 1454–1456 (2002). [CrossRef]
  5. W. Shi and Y. J. Ding, “A monochromatic and high-power terahertz source tunable in the ranges of 2.7–38.4 and 58.2–3540 μm for variety of potential applications,” Appl. Phys. Lett.84, 1635–11637 (2004). [CrossRef]
  6. Y. J. Ding and J. B. Khurgin, “A new scheme for efficient generation of coherent and incoherent submillimeter to THz waves in periodically-poled lithium niobate,” Opt. Commun.148, 105–109 (1998). [CrossRef]
  7. Y. Avetisyan, Y. Sasaki, and H. Ito, “Analysis of THz-wave surface-emitted difference-frequency generation in periodically poled lithium niobate waveguide,” Appl. Phys. B73, 511–514 (2001). [CrossRef]
  8. Y. Sasaki, Y. Avetisyan, K. Kawase, and H. Ito, “Terahertz-wave surface-emitted difference frequency generation in slant-stripe-type periodically poled LiNbO3 crystal,” Appl. Phys. Lett.81, 3323–3325 (2002). [CrossRef]
  9. Y. Sasaki, Y. Avetisyan, H. Yokoyama, and H. Ito, “Surface-emitted terahertz-wave difference-frequency generation in two-dimensional periodically poled lithium niobate,” Opt. Lett.30, 2927–2929 (2005). [CrossRef] [PubMed]
  10. D. E. Thompson and P. D. Coleman, “Step-tunable far infrared radiation by phase matched mixing in planar dielectric waveguides,” IEEE Trans. Microwave Theory Tech.22, 995–1000 (1974). [CrossRef]
  11. W. Shi and Y. J. Ding, “Designs of terahertz waveguides for efficient parametric terahertz generation,” Appl. Phys. Lett.82, 4435–4437 (2003). [CrossRef]
  12. H. Cao, R. A. Linke, and A. Nahata, “Broadband generation of terahertz radiation in a waveguide,” Opt. Lett.29, 1751–1753 (2004). [CrossRef] [PubMed]
  13. V. Berger and C. Sirtori, “Nonlinear phase matching in THz semiconductor waveguides,” Semicond. Sci. Technol.19, 964–970 (2004). [CrossRef]
  14. A. C. Chiang, T. D. Wang, Y. Y. Lin, S. T. Lin, H. H. Lee, Y. C. Huang, and Y. H. Chen, “Enhanced terahertz wave parametric generation and oscillation in lithium niobate waveguides at terahertz frequencies,” Opt. Lett.30, 3392–3394 (2005). [CrossRef]
  15. C. Staus, T. Kuech, and L. McCaughan, “Continuously phase-matched terahertz difference frequency generation in an embedded waveguide structure supporting only fundamental modes,” Opt. Express16, 13296–13303 (2008). [CrossRef] [PubMed]
  16. Z. Ruan, G. Veronis, K. L. Vodopyanov, M. M. Fejer, and S. Fan, “Enhancement of optics-to-THz conversion efficiency by metallic slot waveguides,” Opt. Express17, 13502–13515 (2009). [CrossRef] [PubMed]
  17. D. A. Bagdasaryan, A. D. Makaryan, and P. S. Pogosyan, “Cerenkov radiation from a propagating nonlinear polarization wave,” JETP Lett.37, 594–596 (1983).
  18. K. Suizu, T. Shibuya, T. Akiba, T. Tutui, C. Otani, and K. Kawase, “Cherenkov phase-matched monochromatic THz wave generation using difference frequency generation with a lithium niobate crystal,” Opt. Express16, 7493–7498 (2008). [CrossRef] [PubMed]
  19. K. Suizu, K. Koketsu, T. Shibuya, T. Tsutsui, T. Akiba, and K. Kawase, “Extremely frequency-widened terahertz wave generation using Cherenkov-type radiation,” Opt. Express17, 6676–6681 (2009). [CrossRef] [PubMed]
  20. J. Hebling, G. Almási, I. Z. Kozma, and J. Kuhl, “Velocity matching by pulse front tilting for large-area THz-pulse generation,” Opt. Express10, 1161–1166 (2002). [CrossRef] [PubMed]
  21. K. L. Yeh, M. C. Hoffman, J. Hebling, and K. A. Nelson, “Generation of 10 μJ ultrashort terahertz pulses by optical rectification,” Appl. Phys. Lett.90, 171121 (2007). [CrossRef]
  22. A. G. Stepanov, L. Bonacina, S. V. Chekalin, and J.-P. Wolf, “Generation of 30 μJ single-cycle terahertz pulses at 100 Hz repetition rate by optical rectification,” Opt. Lett.33, 2497–2499 (2008). [CrossRef] [PubMed]
  23. A. G. Stepanov, S. Henin, Y. Petit, L. Bonacina, J. Kasparian, and J.-P. Wolf, “Mobile source of high-energy single-cycle terahertz pulses,” Appl. Phys. B101, 11–14 (2010). [CrossRef]
  24. J. A. Fülöp, L. Pálfalvi, S. Klingebiel, G. Almási, F. Krausz, S. Karsch, and J. Hebling, “Generation of sub-mJ terahertz pulses by optical rectification,” Opt. Lett.37, 557–559 (2012). [CrossRef] [PubMed]
  25. H. Hirori, A. Doi, F. Blanchard, and K. Tanaka, “Single-cycle terahertz pulses with amplitudes exceeding 1 MV/cm generated by optical rectification in LiNbO3,” Appl. Phys. Lett.98, 091106 (2011). [CrossRef]
  26. J. A. Fülöp, L. Pálfalvi, G. Almási, and J. Hebling, “Design of high-energy terahertz sources based on optical rectification,” Opt. Express18, 12311–12327 (2010). [CrossRef] [PubMed]
  27. M. I. Bakunov, S. B. Bodrov, and E. A. Mashkovich, “Terahertz generation with tilted-front laser pulses: dynamic theory for low-absorbibg crystals,” J. Opt. Soc. Am. B28, 1724–1734 (2011). [CrossRef]
  28. L. Pálfalvi, J. A. Fülöp, G. Almási, and J. Hebling, “Novel setups for extremely high power single-cycle terahertz pulse generation by optical rectification,” Appl. Phys. Lett.92, 171107 (2008). [CrossRef]
  29. J. Hebling, K.-L. Yeh, M. C. Hoffmann, B. Bartal, and K. A. Nelson, “Generation of high-power terahertz pulses by tilted-pulse-front excitation and their application possibilities,” J. Opt. Soc. Am. B25, B6–B19 (2008). [CrossRef]
  30. Q. Chen, M. Tani, Z. Jiang, and X.-C. Zhang, “Electro-optic transceivers for terahertz-wave applications,” J. Opt. Soc. Am. B18, 823–831 (2001). [CrossRef]
  31. J. Hebling, A. G. Stepanov, G. Almási, B. Bartal, and J. Kuhl, “Tunable THz pulse generation by optical rectification of ultrasort laser pulses with tilted pulse fronts,” Appl. Phys. B78, 593–599 (2004). [CrossRef]
  32. L. Pálfalvi, J. Hebling, J. Kuhl, Á. Péter, and K. Polgár, “Temperature dependence of the absorption and refraction of Mg-doped congruent and stoichiometric LiNbO3 in the THz range,” J. Appl. Phys.97, 123505 (2005). [CrossRef]
  33. N. S. Stoyanov, T. Feurer, D. W. Ward, E. R. Statz, and K. A. Nelson, “Direct visualization of a polariton resonator in the THz regime,” Opt. Express12, 2387–2396 (2004). [CrossRef] [PubMed]
  34. M. Nagai, K. Tanaka, H. Ohtake, T. Bessho, T. Sugiura, T. Hirosumi, and M. Yoshida, “Generation and detection of terahertz radiation by electro-optical process in GaAs using 1.56 μm fiber laser pulses,” Appl. Phys. Lett.85, 3974–3976 (2004). [CrossRef]
  35. R. H. Stolen, “Far-infrared absorption in high resistivity GaAs,” Appl. Phys. Lett.15, 74–75 (1969). [CrossRef]
  36. D. Grischkowsky, S. Keiding, M. van Exter, and Ch. Fattinger, “Far-infrared time-domain spectroscopy with terahertz beams of dielectrics and semiconductors,” J. Opt. Soc. Am. B7, 2006–2015 (1990). [CrossRef]
  37. L. H. Deng, X. M. Gao, Z. S. Cao, W. D. Chen, Y. Q. Yuan, W. J. Zhang, and Z. B. Gong, “Improvement to Sellmeier equation for periodically poled LiNbO3 crystal using mid-infrared difference-frequency generation,” Opt. Commun.268, 110–114 (2006). [CrossRef]
  38. T. Skauli, P. S. Kuo, K. L. Vodopyanov, T. J. Pinguet, O. Levi, L. A. Eyres, J. S. Harris, M. M. Fejer, B. Gerard, L. Becouarn, and E. Lallier, “Improved dispersion relations for GaAs and applications to nonlinear optics,” J. Appl. Phys.94, 6447–6455 (2003). [CrossRef]
  39. K. L. Vodopyanov, “Optical generation of narrow-band terahertz packets in periodically-inverted electro-optic crystals: conversion efficiency and optimal laser pulse format,” Opt. Express14, 2263–2276 (2006). [CrossRef] [PubMed]
  40. M. I. Bakunov, A. V. Maslov, and S. B. Bodrov, “Fresnel formulas for the forced electromagnetic pulses and their application for optical-to-terahertz conversion in nonlinear crystals,” Phys. Rev. Lett.99, 203904 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited