OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 27 — Dec. 17, 2012
  • pp: 28625–28630

Nanohole induced microfiber Bragg gratings

Ping Zhao, Yuhua Li, Jihua Zhang, Lei Shi, and Xinliang Zhang  »View Author Affiliations

Optics Express, Vol. 20, Issue 27, pp. 28625-28630 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1223 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We demonstrate the fabrication of high-index-contrast microfiber Bragg gratings (MFBGs) using phase-mask technique under seconds’ femtosecond laser ablation to drill periodic nanoholes in microfibers and study the aging properties of the gratings at room temperature. These sub-micrometer-diameter holes, benefited from the resolution of femtosecond laser micromachining beyond-diffraction limit, results in an effective negative refractive index change Δn ~-10−3. Transmission dips over −23 dB are achieved for the gratings with excellent Gaussian apodization and 3-dB reflection bandwidths up to 1.14 nm. Moreover, the grating reflectivity increased by 3 dB, the resonant wavelength blue-shifted 1.35 nm after two weeks’ placement of grating at room temperature and these gratings exhibit excellent stability in the following time. This makes them attractive elements in sensing, nanophotonics and nonlinear optics.

© 2012 OSA

OCIS Codes
(230.3990) Optical devices : Micro-optical devices
(060.3735) Fiber optics and optical communications : Fiber Bragg gratings
(220.4241) Optical design and fabrication : Nanostructure fabrication

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: September 27, 2012
Revised Manuscript: November 14, 2012
Manuscript Accepted: November 15, 2012
Published: December 10, 2012

Ping Zhao, Yuhua Li, Jihua Zhang, Lei Shi, and Xinliang Zhang, "Nanohole induced microfiber Bragg gratings," Opt. Express 20, 28625-28630 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. O. K. Kalli, Fiber Bragg Gratings: Fundamentals and Applications in Telecommunications and Sensing (Artech House, 1999).
  2. G. Brambilla, “Optical fibre nanowires and microwires: a review,” J. Opt.12(4), 043001 (2010). [CrossRef]
  3. Y. Liu, C. Meng, A. P. Zhang, Y. Xiao, H. Yu, and L. Tong, “Compact microfiber Bragg gratings with high-index contrast,” Opt. Lett.36(16), 3115–3117 (2011). [CrossRef] [PubMed]
  4. K. P. Nayak, F. Le Kien, Y. Kawai, K. Hakuta, K. Nakajima, H. T. Miyazaki, and Y. Sugimoto, “Cavity formation on an optical nanofiber using focused ion beam milling technique,” Opt. Express19(15), 14040–14050 (2011). [CrossRef] [PubMed]
  5. M. Ding, M. N. Zervas, and G. Brambilla, “A compact broadband microfiber Bragg grating,” Opt. Express19(16), 15621–15626 (2011). [CrossRef] [PubMed]
  6. Y. Zhang, B. Lin, S. C. Tjin, H. Zhang, G. Wang, P. Shum, and X. Zhang, “Refractive index sensing based on higher-order mode reflection of a microfiber Bragg grating,” Opt. Express18(25), 26345–26350 (2010). [CrossRef] [PubMed]
  7. Y. Ran, Y.-N. Tan, L.-P. Sun, S. Gao, J. Li, L. Jin, and B.-O. Guan, “193 nm excimer laser inscribed Bragg gratings in microfibers for refractive index sensing,” Opt. Express19(19), 18577–18583 (2011). [CrossRef] [PubMed]
  8. R. Ahmad, M. Rochette, and C. Baker, “Fabrication of Bragg gratings in subwavelength diameter As2Se3 chalcogenide wires,” Opt. Lett.36(15), 2886–2888 (2011). [CrossRef] [PubMed]
  9. R. Ahmad and M. Rochette, “Photosensitivity at 1550 nm and Bragg grating inscription in As(2)Se(3) chalcogenide microwires,” Appl. Phys. Lett.99(6), 061109 (2011). [CrossRef]
  10. X. Fang, C. R. Liao, and D. N. Wang, “Femtosecond laser fabricated fiber Bragg grating in microfiber for refractive index sensing,” Opt. Lett.35(7), 1007–1009 (2010). [CrossRef] [PubMed]
  11. Y. Ran, L. Jin, Y. N. Tan, L. P. Sun, J. Li, and B. O. Guan, “High-Efficiency Ultraviolet Inscription of Bragg Gratings in Microfibers,” IEEE Photon. J.4(1), 181–186 (2012). [CrossRef]
  12. J. Canning, “Fibre gratings and devices for sensors and lasers,” Laser Photon. Rev.2(4), 275–289 (2008). [CrossRef]
  13. R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics2(4), 219–225 (2008). [CrossRef]
  14. C. Smelser, S. Mihailov, and D. Grobnic, “Formation of Type I-IR and Type II-IR gratings with an ultrafast IR laser and a phase mask,” Opt. Express13(14), 5377–5386 (2005). [CrossRef] [PubMed]
  15. J. E. Sipe, L. Poladian, and C. M. de Sterke, “Propagation through nonuniform grating structures,” J. Opt. Soc. Am. A11(4), 1307–1320 (1994). [CrossRef]
  16. T. Erdogan, “Fiber grating spectra,” J. Lightwave Technol.15(8), 1277–1294 (1997). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited