OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 27 — Dec. 17, 2012
  • pp: 28655–28663

Surface plasmon assisted optical nonlinearities of uniformly oriented metal nano-ellipsoids in glass

Sabitha Mohan, Jens Lange, Heinrich Graener, and Gerhard Seifert  »View Author Affiliations

Optics Express, Vol. 20, Issue 27, pp. 28655-28663 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1832 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The nonlinear optical properties of nanocomposites consisting of non-spherical silver nanoparticles in glass matrix have been studied using the femtosecond Z-scan technique. The spheroidal nanoparticles were uniformly oriented along a common direction. By polarization sensitive studies, longitudinal and transverse plasmon resonances can be addressed separately. A sign reversal in optical nonlinearity from negative to positive is observed while switching the light interaction from near to non-resonant regime, which can be done by simply rotating the light polarization by 90°. Studying samples with different aspect ratio, we obtained the dispersion of third-order nonlinearity in the near-resonant regime, showing an enhancement of the nonlinear processes by more than two orders of magnitude due to the electric field enhancement at the surface plasmon resonance.

© 2012 OSA

OCIS Codes
(160.1190) Materials : Anisotropic optical materials
(190.4400) Nonlinear optics : Nonlinear optics, materials
(320.7110) Ultrafast optics : Ultrafast nonlinear optics
(160.4236) Materials : Nanomaterials
(250.5403) Optoelectronics : Plasmonics

ToC Category:
Nonlinear Optics

Original Manuscript: September 12, 2012
Revised Manuscript: November 13, 2012
Manuscript Accepted: November 13, 2012
Published: December 10, 2012

Sabitha Mohan, Jens Lange, Heinrich Graener, and Gerhard Seifert, "Surface plasmon assisted optical nonlinearities of uniformly oriented metal nano-ellipsoids in glass," Opt. Express 20, 28655-28663 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. Ricard, Ph. Roussignol, and C. Flytzanis, “Surface-mediated enhancement of optical phase conjugation in metal colloids,” Opt. Lett.10(10), 511–513 (1985). [CrossRef] [PubMed]
  2. Y. Hamanaka, A. Nakamura, S. Omi, N. Del Fatti, F. Vallee, and C. Flytzanis, “Ultrafast response of nonlinear refractive index of silver nanocrystals embedded in glass,” Appl. Phys. Lett.75(12), 1712–1714 (1999). [CrossRef]
  3. U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters (Springer, 1995).
  4. K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: The influence of size, shape and dielectric environment,” J. Phys. Chem. B107(3), 668–677 (2003). [CrossRef]
  5. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983).
  6. H. I. Elim, J. Yang, J.-Y. Lee, J. Mi, and W. Ji, “Observation of saturable and reverse-saturable absorption at longitudinal surface plasmon resonance in gold nanorods,” Appl. Phys. Lett.88(8), 83107–83109 (2006). [CrossRef]
  7. M. Pelton, M. Liu, S. Park, N. F. Scherer, and P. Guyot-Sionnest, “Ultrafast resonant optical scattering from single rods,” Phys. Rev. B73, 155419 (2006). [CrossRef]
  8. J. Li, S. Liu, Y. Liu, F. Zhou, and Z.-Y. Li, “Anisotropic and enhanced absorptive nonlinearities in a macroscopic film induced by aligned gold rods,” Appl. Phys. Lett.96(26), 263103 (2010). [CrossRef]
  9. M. Kyoung and M. Lee, “Nonlinear absorption and refractive index measurements of silver nanorods by the Z-scan technique,” Opt. Commun.171(1-3), 145–148 (1999). [CrossRef]
  10. R. Rangel-Rojo, J. McCarthy, H. T. Bookey, A. K. Kar, L. Rodriguez-Fernandez, J. C. Cheang-Wong, A. Crespo-Sosa, A. Lopez-Suarez, A. Oliver, V. Rodriguez-Iglesias, and H. G. Silva-Pereyra, “Anisotropy in the nonlinear absorption of elongated silver nanoparticles in silica, probed by femtosecond pulses,” Opt. Commun.282(9), 1909–1912 (2009). [CrossRef]
  11. A. Stalmashonak, G. Seifert, A. A. Ünal, U. Skrzypczak, A. Podlipensky, A. Abdolvand, and H. Graener, “Toward the production of micropolarizers by irradiation of composite glass with silver nanoparticles,” Appl. Opt.48(25), F37–F42 (2009). [CrossRef]
  12. H. Hofmeister, W.-G. Drost, and A. Berger, “Oriented prolate silver nanoparticles in glass-characteristics of novel dichoric polarizers,” Nanostr. Mat.12(1-4), 207–210 (1999). [CrossRef]
  13. M. Sheik-Bahae, A. A. Said, T. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurements of optical nonlinearities using a single beam,” IEEE J. Quantum Electron.26(4), 760–769 (1990). [CrossRef]
  14. M. Yin, H. P. Lin, S. H. Tang, and W. Ji, “Determination of nonlinear absorption and refraction by single Z-scan method,” Appl. Phys. B70(4), 587–591 (2000). [CrossRef]
  15. R. del Coso and J. Solis, “Relation between nonlinear refractive index and third-order susceptibility in absorbing media,” J. Opt. Soc. Am. B21(3), 640–644 (2004). [CrossRef]
  16. F. Hache, D. Ricard, C. Flytzanis, and U. Kreibig, “The optical Kerr effect in small metal particles and metal colloids: the case of gold,” Appl. Phys., A Mater. Sci. Process.47(4), 347–357 (1988). [CrossRef]
  17. Y. Guillet, M. Rashidi-Huyeh, and B. Palpant, “Influence of laser pulse characteristics on the hot electron contribution to the third-order nonlinear optical response of gold nanoparticles,” Phys. Rev. B79(4), 045410 (2009). [CrossRef]
  18. Y. Hamanaka, N. Hayashi, A. Nakamura, and S. Omi, “Dispersion of third-order nonlinear optical susceptibility of silver nanocrystal-glass composites,” J. Lumin.87–89, 859–861 (2000). [CrossRef]
  19. D. D. Smith, G. Fischer, R. W. Boyd, and D. A. Gregory, “Cancelation of photoinduced absorption in metal nanoparticles composites through a counterintuitive consequence of local fields,” J. Opt. Soc. Am. B14(7), 1625–1631 (1997). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited