OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 27 — Dec. 17, 2012
  • pp: 28672–28682

Optimization of femtosecond Yb-doped fiber amplifiers for high-quality pulse compression

Hung-Wen Chen, JinKang Lim, Shu-Wei Huang, Damian N. Schimpf, Franz X. Kärtner, and Guoqing Chang  »View Author Affiliations

Optics Express, Vol. 20, Issue 27, pp. 28672-28682 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1224 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We both theoretically and experimentally investigate the optimization of femtosecond Yb-doped fiber amplifiers (YDFAs) to achieve high-quality, high-power, compressed pulses. Ultrashort pulses amplified inside YDFAs are modeled by the generalized nonlinear Schrödinger equation coupled to the steady-state propagation-rate equations. We use this model to study the dependence of compressed-pulse quality on the YDFA parameters, such as the gain fiber’s doping concentration and length, and input pulse pre-chirp, duration, and power. The modeling results confirmed by experiments show that an optimum negative pre-chirp for the input pulse exists to achieve the best compression.

© 2012 OSA

OCIS Codes
(060.2320) Fiber optics and optical communications : Fiber optics amplifiers and oscillators
(060.4370) Fiber optics and optical communications : Nonlinear optics, fibers
(140.3280) Lasers and laser optics : Laser amplifiers

ToC Category:
Lasers and Laser Optics

Original Manuscript: October 12, 2012
Revised Manuscript: November 28, 2012
Manuscript Accepted: November 28, 2012
Published: December 10, 2012

Hung-Wen Chen, JinKang Lim, Shu-Wei Huang, Damian N. Schimpf, Franz X. Kärtner, and Guoqing Chang, "Optimization of femtosecond Yb-doped fiber amplifiers for high-quality pulse compression," Opt. Express 20, 28672-28682 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. Strickland and G. Mourou, “Compression of amplified chirped optical pulses,” Opt. Commun.55(6), 447–449 (1985). [CrossRef]
  2. A. Galvanauskas, “Mode-scalable fiber-based chirped pulse amplification systems,” IEEE J. Sel. Top. Quantum Electron.7(4), 504–517 (2001). [CrossRef]
  3. S. A. Diddams, “The evolving optical frequency comb,” J. Opt. Soc. Am. B27(11), B51–B62 (2010). [CrossRef]
  4. R. Paschotta, J. Nilsson, A. C. Tropper, and D. C. Hanna, “Ytterbium-doped fiber amplifiers,” IEEE J. Sel. Top. Quantum Electron.33(7), 1049–1056 (1997). [CrossRef]
  5. M. Oberthaler and R. A. Höpfel, “Special narrowing of ultrashort laser pulses by self‐phase modulation in optical fibers,” Appl. Phys. Lett.63(8), 1017–1019 (1993). [CrossRef]
  6. J. Limpert, T. Gabler, A. Liem, H. Zellmer, and A. Tünnermann, “SPM-induced spectral compression of picosecond pulses in a single-mode Yb-doped fiber amplifier,” Appl. Phys. B74(2), 191–195 (2002). [CrossRef]
  7. C. R. Giles and E. Desurvire, “Modeling erbium-doped fiber amplifiers,” J. Lightwave Technol.9(2), 271–283 (1991). [CrossRef]
  8. C. R. Giles and E. Desurvire, “Propagation of signal and noise in concatenated erbium-doped fiber optical amplifiers,” J. Lightwave Technol.9(2), 147–154 (1991). [CrossRef]
  9. F. He, J. H. Price, K. T. Vu, A. Malinowski, J. K. Sahu, and D. J. Richardson, “Optimisation of cascaded Yb fiber amplifier chains using numerical-modelling,” Opt. Express14(26), 12846–12858 (2006). [CrossRef] [PubMed]
  10. T. J. Whitley and R. Wyatt, “Alternative Gaussian spot size polynomial for use with doped fiber amplifiers,” IEEE Photon. Technol. Lett.5(11), 1325–1327 (1993). [CrossRef]
  11. G. P. Agrawal, Nonlinear Fiber Optics (Academic Press, 2006).
  12. J. Hult, “A fourth-order Runge–Kutta in the interaction picture method for simulating supercontinuum generation in optical fibers,” J. Lightwave Technol.25(12), 3770–3775 (2007). [CrossRef]
  13. A. Heidt, “Efficient adaptive step size method for the simulation of supercontinuum generation in optical fibers,” J. Lightwave Technol.27(18), 3984–3991 (2009). [CrossRef]
  14. B. Ortaç, J. Limpert, and A. Tünnermann, “High-energy femtosecond Yb-doped fiber laser operating in the anomalous dispersion regime,” Opt. Lett.32(15), 2149–2151 (2007). [CrossRef] [PubMed]
  15. M. E. Fermann, V. I. Kruglov, B. C. Thomsen, J. M. Dudley, and J. D. Harvey, “Self-similar propagation and amplification of parabolic pulses in optical fibers,” Phys. Rev. Lett.84(26), 6010–6013 (2000). [CrossRef] [PubMed]
  16. V. I. Kruglov, A. C. Peacock, J. D. Harvey, and J. M. Dudley, “Self-similar propagation of parabolic pulses in normal-dispersion fiber amplifiers,” J. Opt. Soc. Am. B19(3), 461–469 (2002). [CrossRef]
  17. G. Chang, A. Galvanauskas, H. G. Winful, and T. B. Norris, “Dependence of parabolic pulse amplification on stimulated Raman scattering and gain bandwidth,” Opt. Lett.29(22), 2647–2649 (2004). [CrossRef] [PubMed]
  18. D. B. Soh, J. Nilsson, and A. B. Grudinin, “Efficient femtosecond pulse generation using a parabolic amplifier combined with a pulse compressor. II. Finite gain-bandwidth effect,” J. Opt. Soc. Am. B23(1), 10–19 (2006). [CrossRef]
  19. H.-W. Chen, T. Sosnowski, C.-H. Liu, L.-J. Chen, J. R. Birge, A. Galvanauskas, F. X. Kärtner, and G. Chang, “Chirally-coupled-core Yb-fiber laser delivering 80-fs pulses with diffraction-limited beam quality warranted by a high-dispersion mirror based compressor,” Opt. Express18(24), 24699–24705 (2010). [CrossRef] [PubMed]
  20. H.-W. Chen, G. Chang, S. Xu, Z. Yang, and F. X. Kärtner, “3 GHz, fundamentally mode-locked, femtosecond Yb-fiber laser,” Opt. Lett.37(17), 3522–3524 (2012). [CrossRef] [PubMed]
  21. C.-H. Li, A. J. Benedick, P. Fendel, A. G. Glenday, F. X. Kärtner, D. F. Phillips, D. Sasselov, A. Szentgyorgyi, and R. L. Walsworth, “A laser frequency comb that enables radial velocity measurements with a precision of 1 cm s-1.,” Nature452(7187), 610–612 (2008). [CrossRef] [PubMed]
  22. T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T. W. Hänsch, L. Pasquini, A. Manescau, S. D’Odorico, M. T. Murphy, T. Kentischer, W. Schmidt, and T. Udem, “Laser frequency combs for astronomical observations,” Science321(5894), 1335–1337 (2008). [CrossRef] [PubMed]
  23. D. A. Braje, M. S. Kirchner, S. Osterman, T. Fortier, and S. A. Diddams, “Astronomical spectrograph calibration with broad-spectrum frequency combs,” Eur. Phys. J. D48(1), 57–66 (2008). [CrossRef]
  24. G. Chang, C.-H. Li, D. F. Phillips, R. L. Walsworth, and F. X. Kärtner, “Toward a broadband astro-comb: effects of nonlinear spectral broadening in optical fibers,” Opt. Express18(12), 12736–12747 (2010). [CrossRef] [PubMed]
  25. T. Wilken, G. L. Curto, R. A. Probst, T. Steinmetz, A. Manescau, L. Pasquini, J. I. González Hernández, R. Rebolo, T. W. Hänsch, T. Udem, and R. Holzwarth, “A spectrograph for exoplanet observations calibrated at the centimetre-per-second level,” Nature485(7400), 611–614 (2012). [CrossRef] [PubMed]
  26. G. G. Ycas, F. Quinlan, S. A. Diddams, S. Osterman, S. Mahadevan, S. Redman, R. Terrien, L. Ramsey, C. F. Bender, B. Botzer, and S. Sigurdsson, “Demonstration of on-sky calibration of astronomical spectra using a 25 GHz near-IR laser frequency comb,” Opt. Express20(6), 6631–6643 (2012). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited