OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 27 — Dec. 17, 2012
  • pp: 28742–28751

Soot volume fraction fields in unsteady axis-symmetric flames by continuous laser extinction technique.

Muhammad Kashif, Jérôme Bonnety, Philippe Guibert, Céline Morin, and Guillaume Legros  »View Author Affiliations

Optics Express, Vol. 20, Issue 27, pp. 28742-28751 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1418 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A Laser Extinction Method has been set up to provide two-dimensional soot volume fraction field time history at a tunable frequency up to 70 Hz inside an axis-symmetric diffusion flame experiencing slow unsteady phenomena preserving the symmetry. The use of a continuous wave laser as the light source enables this repetition rate, which is an incremental advance in the laser extinction technique. The technique is shown to allow a fine description of the soot volume fraction field in a flickering flame exhibiting a 12.6 Hz flickering phenomenon. Within this range of repetition rate, the technique and its subsequent post-processing require neither any method for time-domain reconstruction nor any correction for energy intrusion. Possibly complemented by such a reconstruction method, the technique should support further soot volume fraction database in oscillating flames that exhibit characteristic times relevant to the current efforts in the validation of soot processes modeling.

© 2012 OSA

OCIS Codes
(100.1830) Image processing : Deconvolution
(120.1740) Instrumentation, measurement, and metrology : Combustion diagnostics
(290.1090) Scattering : Aerosol and cloud effects
(290.2200) Scattering : Extinction

ToC Category:
Instrumentation, Measurement, and Metrology

Original Manuscript: August 31, 2012
Revised Manuscript: October 24, 2012
Manuscript Accepted: November 27, 2012
Published: December 11, 2012

Muhammad Kashif, Jérôme Bonnety, Philippe Guibert, Céline Morin, and Guillaume Legros, "Soot volume fraction fields in unsteady axis-symmetric flames by continuous laser extinction technique.," Opt. Express 20, 28742-28751 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. D. Smooke, C. S. Mcenally, L. D. Pfefferle, R. J. Hall, and M. B. Colket, “Computational and experimental study of soot formation in a coflow, laminar diffusion flame,” Comb. Flame117, 117–139 (1999). [CrossRef]
  2. P. Greenberg and J. Ku, “Soot volume fraction imaging,” Appl. Opt.36, 5514–5522 (1997). [CrossRef] [PubMed]
  3. A. Fuentes, G. Legros, A. Claverie, P. Joulain, J. P. Vantelon, and J. L. Torero, “Interactions between soot and CH* in a laminar boundary layer type diffusion flame in microgravity,” Proc. Combust. Inst.31, 2685–2692 (2007). [CrossRef]
  4. F. Liu, K. A. Thomson, and G. J. Smallwood, “Effects of soot absorption and scattering on LII intensities in laminar coflow diffusion flames,” J. Quant. Spectrosc. Radiat. Trans.109, 337–348 (2008). [CrossRef]
  5. G. Legros, A. Fuentes, P. Ben-Abdallah, J. Baillargeat, P. Joulain, J. P. Vantelon, and J. L. Torero, “Three-dimensional recomposition of the absorption field inside a non-buoyant sooting diffusion flame,” Opt. Lett.30, 3311–3313 (2005). [CrossRef]
  6. I. M. Kennedy, “Modeling and measurements of soot and species in a laminar diffusion flame,” Prog. Energy Combust. Sci.23, 95–132 (1997). [CrossRef]
  7. G. Blanquart and H. Pitsch, “Analyzing the effects of temperature on soot formation with a joint volume-surface-hydrogen model,” Comb. Flame156, 1614–1626 (2009). [CrossRef]
  8. G. M. Faeth and G. S. Samuelsen, “Fast reaction non-premixed combustion,” Prog. Energy Combust. Sci.12, 305–372 (1986). [CrossRef]
  9. L. D. Chen, J. P. Seaba, W. M. Roquemore, and L. P. Gore, “Buoyant diffusion flames,” Proc. Combust. Inst.22, 677–684 (1988).
  10. K. C. Smyth, C. R. Shaddix, and D. A. Everest, “Aspects of soot dynamics as revealed by measurements of broadband fluorescence and flame luminosity in flickering diffusion flames,” Comb. Flame111, 185–207 (1997). [CrossRef]
  11. J. Hentschel, R. Suntz, and H. Bockhorn, “Soot formation and oxidation in oscillating methane-air diffusion flames at elevated pressure,” Appl. Opt.44, 6673–6681 (2005). [CrossRef] [PubMed]
  12. G. Legros, T. Gomez, M. Fessard, T. Gouache, T. Ader, P. Guibert, P. Sagaut, and J. L. Torero, “Magnetically induced flame flickering,” Proc. Combust. Inst.33, 1095–1103 (2011). [CrossRef]
  13. S. Mahalingam, B. J. Cantwell, and J. H. Ferziger, “Stability of low-speed reacting flows,” Phys. Fluids A33, 1533–1543 (1991). [CrossRef]
  14. V. Katta, W. M. Roquemore, A. Menon, S. Y. Lee, R. J. Santoro, and T. A. Lintzinger, “Impact of soot on flame flicker,” Proc. Combust. Inst.32, 1343–1350 (2009). [CrossRef]
  15. R. J. Santoro, H. G. Semerjian, and R. A. Dobbins, “Soot particle measurements in diffusion flames,” Combust. Flame51, 203–218 (1983). [CrossRef]
  16. K. J. Daun, K. A. Thomson, F. Liu, and G. J. Smallwood, “Deconvolution of axisymmetric flame properties using Tikhonov regularization,” Appl. Opt.45, 4638–4646 (2006). [CrossRef] [PubMed]
  17. E. O. Akesson and K. J. Daun, “Parameter selection methods for axisymmetric flame tomography through Tikhonov regularization,” Appl. Opt.47, 407–416 (2008). [CrossRef] [PubMed]
  18. C. P. Arana, M. Pontoni, S. Sen, and I. K. Puri, “Field measurements of soot volume fractions in laminar partially premixed coflow ethylene/air flames,” Comb. Flame138, 362–372 (2004). [CrossRef]
  19. K. C. Smyth and C. R. Shaddix, “The elusive history of m̃ =1.57–0.56i for the refractive index of soot,” Comb. Flame107, 314–320 (1996). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

Supplementary Material

» Media 1: MP4 (2720 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited