OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 27 — Dec. 17, 2012
  • pp: 28801–28807

Indirect optical transitions in hybrid spheres with alternating layers of titania and graphene oxide nanosheets

Shanshan Bao, Zheng Hua, Xiaoyong Wang, Yong Zhou, Chunfeng Zhang, Wenguang Tu, Zhigang Zou, and Min Xiao  »View Author Affiliations

Optics Express, Vol. 20, Issue 27, pp. 28801-28807 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1194 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



In this report, we studied the optical properties of hybrid spherical structures consisting of alternating nanosheets of titania (TiO2) and graphene oxide (GO) prepared by a layer-by-layer self-assembly technique. Compared to samples with only TiO2 spheres or GO nanosheets, a blue-to-red light emission band emerges and persists in this novel composite material even after it was further reduced through microwave irradiation. From detailed time-resolved measurements and energy-level structure modeling, this unexpected fluorescent feature was attributed to the indirect optical transitions between TiO2 and the localized sp2 domains of GO in a charge-separated configuration.

© 2012 OSA

OCIS Codes
(300.2530) Spectroscopy : Fluorescence, laser-induced
(300.6470) Spectroscopy : Spectroscopy, semiconductors

ToC Category:

Original Manuscript: August 30, 2012
Revised Manuscript: November 28, 2012
Manuscript Accepted: December 3, 2012
Published: December 12, 2012

Shanshan Bao, Zheng Hua, Xiaoyong Wang, Yong Zhou, Chunfeng Zhang, Wenguang Tu, Zhigang Zou, and Min Xiao, "Indirect optical transitions in hybrid spheres with alternating layers of titania and graphene oxide nanosheets," Opt. Express 20, 28801-28807 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. K. P. Loh, Q. Bao, G. Eda, and M. Chhowalla, “Graphene oxide as a chemically tunable platform for optical applications,” Nat. Chem.2(12), 1015–1024 (2010). [CrossRef] [PubMed]
  2. G. Eda and M. Chhowalla, “Chemically derived graphene oxide: Towards large-area thin-film electronics and optoelectronics,” Adv. Mater. (Deerfield Beach Fla.)22(22), 2392–2415 (2010). [CrossRef] [PubMed]
  3. G. Eda, Y. Y. Lin, C. Mattevi, H. Yamaguchi, H. A. Chen, I. S. Chen, C. W. Chen, and M. Chhowalla, “Blue photoluminescence from chemically derived graphene oxide,” Adv. Mater. (Deerfield Beach Fla.)22(4), 505–509 (2010). [CrossRef] [PubMed]
  4. X. Sun, Z. Liu, K. Welsher, J. T. Robinson, A. Goodwin, S. Zaric, and H. Dai, “Nano-graphene oxide for cellular imaging and drug delivery,” Nano Res1(3), 203–212 (2008). [CrossRef] [PubMed]
  5. Z. Luo, P. M. Vora, E. J. Mele, A. T. C. Johnson, and J. M. Kikkawa, “Photoluminescence and band gap modulation in graphene oxide,” Appl. Phys. Lett.94(11), 111909 (2009). [CrossRef]
  6. T. Yeh, F. Chan, C. Hsieh, and H. Teng, “Graphite oxide with different oxygenated levels for hydrogen and oxygen production from water under illumination: The band positions of graphite oxide,” J. Phys. Chem. C115(45), 22587–22597 (2011). [CrossRef]
  7. X. Wang, L. Zhi, and K. Müllen, “Transparent, conductive graphene electrodes for dye-sensitized solar cells,” Nano Lett.8(1), 323–327 (2008). [CrossRef] [PubMed]
  8. J. Wu, M. Agrawal, H. A. Becerril, Z. Bao, Z. Liu, Y. Chen, and P. Peumans, “Organic light-emitting diodes on solution-processed graphene transparent electrodes,” ACS Nano4(1), 43–48 (2010). [CrossRef] [PubMed]
  9. C. H. Lu, H. H. Yang, C. L. Zhu, X. Chen, and G. N. Chen, “A graphene platform for sensing biomolecules,” Angew. Chem. Int. Ed. Engl.48(26), 4785–4787 (2009). [CrossRef] [PubMed]
  10. X. Wang, X. Li, L. Zhang, Y. Yoon, P. K. Weber, H. Wang, J. Guo, and H. Dai, “N-doping of graphene through electrothermal reactions with ammonia,” Science324(5928), 768–771 (2009). [CrossRef] [PubMed]
  11. Z. X. Gan, S. J. Xiong, X. L. Wu, C. Y. He, J. C. Shen, and P. K. Chu, “Mn2+-bonded reduced graphene oxide with strong radiative recombination in broad visible range caused by resonant energy transfer,” Nano Lett.11(9), 3951–3956 (2011). [CrossRef] [PubMed]
  12. T. Sasaki and M. Watanabe, “Semiconductor nanosheet crystallites of quasi-TiO2 and their optical properties,” J. Phys. Chem. B101(49), 10159–10161 (1997). [CrossRef]
  13. N. D. Abazović, M. I. Čomor, M. D. Dramićanin, D. J. Jovanović, S. P. Ahrenkiel, and J. M. Nedeljković, “Photoluminescence of anatase and rutile TiO2 particles,” J. Phys. Chem. B110(50), 25366–25370 (2006). [CrossRef] [PubMed]
  14. K. Woan, G. Pyrgiotakis, and W. Sigmund, “Photocatalytic carbon-nanotube-TiO2 composites,” Adv. Mater. (Deerfield Beach Fla.)21(21), 2233–2239 (2009). [CrossRef]
  15. Y. T. Liang, B. K. Vijayan, K. A. Gray, and M. C. Hersam, “Minimizing graphene defects enhances titania nanocomposite-based photocatalytic reduction of CO2 for improved solar fuel production,” Nano Lett.11(7), 2865–2870 (2011). [CrossRef] [PubMed]
  16. H. Zhang, X. Lv, Y. Li, Y. Wang, and J. Li, “P25-graphene composite as a high performance photocatalyst,” ACS Nano4(1), 380–386 (2010). [CrossRef] [PubMed]
  17. W. Tu, Y. Zhou, Q. Liu, Z. Tian, J. Gao, X. Chen, H. Zhang, J. Liu, and Z. Zou, “Robust hollow spheres consisting of alternating titania nanosheets and graphene nanosheets with high photocatalytic activity for CO2 conversion into renewable fuels,” Adv. Funct. Mater.22(6), 1215–1221 (2012). [CrossRef]
  18. D. Pan, J. Zhang, Z. Li, and M. Wu, “Hydrothermal route for cutting graphene sheets into blue-luminescent graphene quantum dots,” Adv. Mater. (Deerfield Beach Fla.)22(6), 734–738 (2010). [CrossRef] [PubMed]
  19. Q. Mei, K. Zhang, G. Guan, B. Liu, S. Wang, and Z. Zhang, “Highly efficient photoluminescent graphene oxide with tunable surface properties,” Chem. Commun. (Camb.)46(39), 7319–7321 (2010). [CrossRef] [PubMed]
  20. J. Ito, J. Nakamura, and A. Natori, “Semiconducting nature of the oxygen-adsorbed graphene sheet,” J. Appl. Phys.103(11), 113712 (2008). [CrossRef]
  21. J. Hensel, G. Wang, Y. Li, and J. Z. Zhang, “Synergistic effect of CdSe quantum dot sensitization and nitrogen doping of TiO2 nanostructures for photoelectrochemical solar hydrogen generation,” Nano Lett.10(2), 478–483 (2010). [CrossRef] [PubMed]
  22. C. T. Chien, S. S. Li, W. J. Lai, Y. C. Yeh, H. A. Chen, I. S. Chen, L. C. Chen, K. H. Chen, T. Nemoto, S. Isoda, M. Chen, T. Fujita, G. Eda, H. Yamaguchi, M. Chhowalla, and C. W. Chen, “Tunable photoluminescence from graphene oxide,” Angew. Chem. Int. Ed. Engl.51(27), 6662–6666 (2012). [CrossRef] [PubMed]
  23. S. H. Elder, F. M. Cot, Y. Su, S. M. Heald, A. M. Tyryshkin, M. K. Bowman, Y. Gao, A. G. Joly, M. L. Balmer, A. C. Kolwaite, K. A. Magrini, and D. M. Blake, “The discovery and study of nanocrystalline TiO2-(MoO3) core-shell materials,” J. Am. Chem. Soc.122(21), 5138–5146 (2000). [CrossRef]
  24. V. I. Klimov, S. A. Ivanov, J. Nanda, M. Achermann, I. Bezel, J. A. McGuire, and A. Piryatinski, “Single-exciton optical gain in semiconductor nanocrystals,” Nature447(7143), 441–446 (2007). [CrossRef] [PubMed]
  25. A. Bagri, C. Mattevi, M. Acik, Y. J. Chabal, M. Chhowalla, and V. B. Shenoy, “Structural evolution during the reduction of chemically derived graphene oxide,” Nat. Chem.2(7), 581–587 (2010). [CrossRef] [PubMed]
  26. K. K. Manga, Y. Zhou, Y. Yan, and K. P. Loh, “Multilayer hybrid films consisting of alternating graphene and titania nanosheets with ultrafast electron transfer and photoconversion properties,” Adv. Funct. Mater.19(22), 3638–3643 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited