OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 27 — Dec. 17, 2012
  • pp: 28808–28818

Electrical pump & probe and injected carrier losses quantification in Er doped Si slot waveguides

J. M. Ramírez, Y. Berencén, F. Ferrarese Lupi, D. Navarro-Urrios, A. Anopchenko, A. Tengattini, N. Prtljaga, L. Pavesi, P. Rivallin, J. M. Fedeli, and B. Garrido  »View Author Affiliations

Optics Express, Vol. 20, Issue 27, pp. 28808-28818 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1487 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Electrically driven Er3+ doped Si slot waveguides emitting at 1530 nm are demonstrated. Two different Er3+ doped active layers were fabricated in the slot region: a pure SiO2 and a Si-rich oxide. Pulsed polarization driving of the waveguides was used to characterize the time response of the electroluminescence (EL) and of the signal probe transmission in 1 mm long waveguides. Injected carrier absorption losses modulate the EL signal and, since the carrier lifetime is much smaller than that of Er3+ ions, a sharp EL peak was observed when the polarization was switched off. A time-resolved electrical pump & probe measurement in combination with lock-in amplifier techniques allowed to quantify the injected carrier absorption losses. We found an extinction ratio of 6 dB, passive propagation losses of about 4 dB/mm, and a spectral bandwidth > 25 nm at an effective d.c. power consumption of 120 μW. All these performances suggest the usage of these devices as electro-optical modulators.

© 2012 OSA

OCIS Codes
(130.0250) Integrated optics : Optoelectronics
(160.5690) Materials : Rare-earth-doped materials

ToC Category:

Original Manuscript: September 11, 2012
Revised Manuscript: October 30, 2012
Manuscript Accepted: November 1, 2012
Published: December 12, 2012

J. M. Ramírez, Y. Berencén, F. Ferrarese Lupi, D. Navarro-Urrios, A. Anopchenko, A. Tengattini, N. Prtljaga, L. Pavesi, P. Rivallin, J. M. Fedeli, and B. Garrido, "Electrical pump & probe and injected carrier losses quantification in Er doped Si slot waveguides," Opt. Express 20, 28808-28818 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. B. Jalali and S. Fathpour, “Silicon Photonics,” J. Lightwave Technol.24(12), 4600–4615 (2006). [CrossRef]
  2. R. Soref, “The Past, Present, and Future of Silicon Photonics,” IEEE J. Sel. Top. Quantum Electron.12(6), 1678–1687 (2006). [CrossRef]
  3. M. Lipson, “Guiding, modulating, and emitting light on silicon-challenges and opportunities,” J. Lightwave Technol.23(12), 4222–4238 (2005). [CrossRef]
  4. J. D. B. Bradley and M. Pollnau, “Erbium-doped integrated waveguide amplifiers and lasers,” Laser Photon. Rev.5(3), 368–403 (2011). [CrossRef]
  5. J. Cardenas, C. B. Poitras, J. T. Robinson, K. Preston, L. Chen, and M. Lipson, “Low loss etchless Silicon photonic waveguides,” Opt. Express17(6), 4752–4757 (2009). [CrossRef] [PubMed]
  6. Y. A. Vlasov, M. O’Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature438(7064), 65–69 (2005). [CrossRef] [PubMed]
  7. V. R. Almeida, Q. F. Xu, C. A. Barrios, and M. Lipson, “Guiding and confining Light in void nanostructure,” Opt. Lett.29(11), 1209–1211 (2004). [CrossRef] [PubMed]
  8. M. Galli, D. Gerace, A. Politi, M. Liscidini, M. Patrini, L. C. Andreani, A. Canino, M. Miritello, R. Lo Salvio, A. Irrera, and F. Priolo, “Direct evidence of light confinement and emission enhancement in active silicon-on-insulator slot waveguides,” Appl. Phys. Lett.89, 241114 (2006).
  9. K. Preston and M. Lipson, “Slot waveguides with polycrystalline silicon for electrical injection,” Opt. Express17(3), 1527–1534 (2009). [CrossRef] [PubMed]
  10. H. Jayatilleka, A. Nasrollahy-Shiraz, and A. J. Kenyon, “Electrically pumped silicon waveguide light sources,” Opt. Express19(24), 24569–24576 (2011). [CrossRef] [PubMed]
  11. J. M. Ramírez, F. Ferrarese Lupi, Y. Berencén, A. Anopchenko, J. P. Colonna, O. Jambois, J. M. Fedeli, L. Pavesi, N. Prtljaga, P. Rivallin, A. Tengattini, D. Navarro-Urrios, and B. Garrido, “Er-doped light emitting slot waveguides monolithically integrated in a silicon photonic chip,” Nanotechnology (to be published). [PubMed]
  12. D. Navarro-Urrios, A. Pitanti, N. Daldosso, F. Gourbilleau, R. Rizk, G. Pucker, and L. Pavesi, “Quantification of the carrier absorption losses in Si-nanocrystal rich rib waveguides at 1.54 μm,” Appl. Phys. Lett.92, 051101 (2008).
  13. T. Creazzo, B. Redding, E. Marchena, S. Shi, and D. W. Prather, “Free-carrier absorption modulation in silicon nanocrystal slot waveguides,” Opt. Lett.35(21), 3691–3693 (2010). [CrossRef] [PubMed]
  14. G. M. Miller, R. M. Briggs, and H. A. Atwater, “Achieving optical gain in waveguide-confined nanocluster-sensitized erbium by pulsed excitation,” J. Appl. Phys.108, 063109 (2010).
  15. R. Sun, P. Dong, N. N. Feng, C. Y. Hong, J. Michel, M. Lipson, and L. Kimerling, “Horizontal single and multiple slot waveguides: optical transmission at λ = 1550 nm,” Opt. Express15(26), 17967–17972 (2007). [CrossRef] [PubMed]
  16. D. J. DiMaria and D. W. Dong, “High current injection into SiO2 from Si rich SiO2 films and experimental applications,” J. Appl. Phys.51(5), 2722–2735 (1980). [CrossRef]
  17. J. M. Ramírez, F. Ferrarese Lupi, O. Jambois, Y. Berencén, D. Navarro-Urrios, A. Anopchenko, A. Marconi, N. Prtljaga, A. Tengattini, L. Pavesi, J. P. Colonna, J. M. Fedeli, and B. Garrido, “Erbium emission in MOS light emitting devices: from energy transfer to direct impact excitation,” Nanotechnology23, 125203 (2012).
  18. F Iacona, D Pacifici, A Irrera, M Miritello, G Franzò, and F Priolo, “Electroluminescence at 1.54 μm in Er-doped Si nanocluster-based devices,” Appl. Phys. Lett.81, 3242 (2002).
  19. A. C. Turner-Foster, M. A. Foster, J. S. Levy, C. B. Poitras, R. Salem, A. L. Gaeta, and M. Lipson, “Ultrashort free-carrier lifetime in low-loss silicon nanowaveguides,” Opt. Express18(4), 3582–3591 (2010). [CrossRef] [PubMed]
  20. J. Liu, M. Beals, A. Pomerene, S. Bernardis, R. Sun, J. Cheng, L. C. Kimerling, and J. Michel, “Waveguide-integrated, ultralow-energy GeSi electro-absorption modulators,” Nat. Photonics2(7), 433–437 (2008). [CrossRef]
  21. S. Y. Seo, J. Lee, H. Jung, E. S. Shin, B. Kang, and S. Bae, “The thermo-optic effect of Si nanocrystals in silicon-rich silicon oxide thin films,” Appl. Phys. Lett.85, 2526 (2004).
  22. R. C. Zaccuri, G. Coppola, and M. Iodice, “Thermo-electro-optical analysis of an integrated waveguide-vanishing-based optical modulator,” J. Opt. A: Pure Appl. Opt.8(7), S567–S573 (2006). [CrossRef]
  23. W. M. Green, M. J. Rooks, L. Sekaric, and Y. A. Vlasov, “Ultra-compact, low RF power, 10 Gb/s silicon Mach-Zehnder modulator,” Opt. Express15(25), 17106–17113 (2007). [CrossRef] [PubMed]
  24. L. Chen, K. Preston, S. Manipatruni, and M. Lipson, “Integrated GHz silicon photonic interconnect with micrometer-scale modulators and detectors,” Opt. Express17(17), 15248–15256 (2009). [CrossRef] [PubMed]
  25. L. Liao, D. Samara-Rubio, M. Morse, A. Liu, D. Hodge, D. Rubin, U. D. Keil, and T. Franck, “High speed silicon Mach-Zehnder modulator,” Opt. Express13(8), 3129–3135 (2005). [CrossRef] [PubMed]
  26. G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nat. Photonics4(8), 518–526 (2010). [CrossRef]
  27. A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature427(6975), 615–618 (2004). [CrossRef] [PubMed]
  28. A. Anopchenko, A. Marconi, E. Moser, S. Prezioso, M. Wang, L. Pavesi, G. Pucker, and P. Bellutti, “Low-voltage onset of electroluminescence in nanocrystalline-Si/SiO2 multilayers,” J. Appl. Phys.106, 033104 (2009).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited