OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 27 — Dec. 17, 2012
  • pp: 28829–28838

Thermoreflectance of metal transducers for optical pump-probe studies of thermal properties

R. B. Wilson, Brent A. Apgar, Lane W. Martin, and David G. Cahill  »View Author Affiliations

Optics Express, Vol. 20, Issue 27, pp. 28829-28838 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (929 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report measurements of the temperature dependence of the optical reflectivity, dR/dT of fifteen metallic elements at a wavelength of λ = 1.03 μm by time-domain thermoreflectance (TDTR); and the thermoreflectance of thin-films of Pt, Ta, Al, Au, SrRuO3, and LaNiO3 over the wavelength range 0.4 < λ < 1.6 μm using variable angle spectroscopic ellipsometry. At λ = 1.03 μm, Al, Ta, Re, Ru, have high values of thermoreflectance, dR/dT > 6∙10−5 K−1, and are good choices as optical transducers for TDTR experiments using a Yb:fiber laser oscillator. If low optical reflectivity and the associated high degree of steady-state heating are not a concern, LaNiO3 provides an exceptionally sensitive thermometer in the infrared; (1/R)(dR/dT) > 2.5∙10−4 K−1 in the wavelength range 0.85 < λ < 1.3 μm. This compilation of data will assist in the design and interpretation of optical pump-probe studies of thermal properties.

© 2012 OSA

OCIS Codes
(110.6820) Imaging systems : Thermal imaging
(160.3900) Materials : Metals
(320.7100) Ultrafast optics : Ultrafast measurements
(350.5340) Other areas of optics : Photothermal effects

ToC Category:

Original Manuscript: September 18, 2012
Revised Manuscript: November 1, 2012
Manuscript Accepted: November 29, 2012
Published: December 12, 2012

R. B. Wilson, Brent A. Apgar, Lane W. Martin, and David G. Cahill, "Thermoreflectance of metal transducers for optical pump-probe studies of thermal properties," Opt. Express 20, 28829-28838 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. G. Cahill, “Analysis of heat flow in layered structures for time-domain thermoreflectance,” Rev. Sci. Instrum.75(12), 5119–5122 (2004). [CrossRef]
  2. A. J. Schmidt, R. Cheaito, and M. Chiesa, “A frequency-domain thermoreflectance method for the characterization of thermal properties,” Rev. Sci. Instrum.80(9), 094901–094906 (2009). [CrossRef] [PubMed]
  3. J. A. Malen, K. Baheti, T. Tong, Y. Zhao, J. A. Hudgings, and A. Majumdar, “Optical measurement of thermal conductivity using fiber aligned frequency domain thermoreflectance,” J. Heat Transfer133(8), 081601 (2011). [CrossRef]
  4. Y. K. Koh, Y. Cao, D. G. Cahill, and D. Jena, “Heat-transport mechanisms in superlattices,” Adv. Funct. Mater.19(4), 610–615 (2009). [CrossRef]
  5. C. Chiritescu, D. G. Cahill, N. Nguyen, D. Johnson, A. Bodapati, P. Keblinski, and P. Zschack, “Ultralow thermal conductivity in disordered, layered WSe2 crystals,” Science315(5810), 351–353 (2007). [CrossRef] [PubMed]
  6. Y. K. Koh and D. G. Cahill, “Frequency dependence of the thermal conductivity of semiconductor alloys,” Phys. Rev. B76(7), 075207 (2007). [CrossRef]
  7. A. J. Minnich, J. A. Johnson, A. J. Schmidt, K. Esfarjani, M. S. Dresselhaus, K. A. Nelson, and G. Chen, “Thermal conductivity spectroscopy technique to measure phonon mean free paths,” Phys. Rev. Lett.107(9), 095901 (2011). [CrossRef] [PubMed]
  8. E. Colavita, A. Franciosi, C. Mariani, and R. Rosei, “Thermoreflectance test of W, Mo, and paramagnetic Cr band structures,” Phys. Rev. B27(8), 4684–4693 (1983). [CrossRef]
  9. R. Rosei and D. W. Lynch, “Thermomodulation Spectra of Al, Au, and Cu,” Phys. Rev. B5(10), 3883–3894 (1972). [CrossRef]
  10. R. Rosei, E. Colavita, A. Franciosi, J. H. Weaver, and D. T. Peterson, “Electronic structure of the bcc transition metals: thermoreflectance studies of bulk V, Nb, Ta, and αTaHx,” Phys. Rev. B21(8), 3152–3157 (1980). [CrossRef]
  11. W. J. Scouler, “Temperature-modulated reflectance of gold from 2 to 10 eV,” Phys. Rev. Lett.18(12), 445–448 (1967). [CrossRef]
  12. Y. Wang, J. Y. Park, Y. K. Koh, and D. G. Cahill, “Thermoreflectance of metal transducers for time-domain thermoreflectance,” J. Appl. Phys.108(4), 043507 (2010). [CrossRef]
  13. G. Tessier, S. Hole, and D. Fournier, “Quantitative thermal imaging by synchronous thermoreflectance with optimized illumination wavelengths,” Appl. Phys. Lett.78(16), 2267–2269 (2001). [CrossRef]
  14. M. Otter, “Temperaturabhängigkeit der optischen konstanten massiver metalle,”Zeitschrift für Physik A Hadrons and Nuclei 161, 539–549 (1961).
  15. W.-P. Hsieh and D. G. Cahill, “Ta and Au(Pd) alloy metal film transducers for time-domain thermoreflectance at high pressures,” J. Appl. Phys.109(11), 113520 (2011). [CrossRef]
  16. J. Alper and K. Hamad-Schifferli, “Effect of ligands on thermal dissipation from gold nanorods,” Langmuir26(6), 3786–3789 (2010). [CrossRef] [PubMed]
  17. X. Huang, S. Neretina, and M. A. El-Sayed, “Gold nanorods: from synthesis and properties to biological and biomedical applications,” Adv. Mater. (Deerfield Beach Fla.)21(48), 4880–4910 (2009). [CrossRef]
  18. S. Sato, “Nucleation properties of magnetron-sputtered tantalum,” Thin Solid Films94(4), 321–329 (1982). [CrossRef]
  19. K. Kang, Y. K. Koh, C. Chiritescu, X. Zheng, and D. G. Cahill, “Two-tint pump-probe measurements using a femtosecond laser oscillator and sharp-edged optical filters,” Rev. Sci. Instrum.79(11), 114901 (2008). [CrossRef] [PubMed]
  20. J. A. McCaulley, V. M. Donnelly, M. Vernon, and I. Taha, “Temperature dependence of the near-infrared refractive index of silicon, gallium arsenide, and indium phosphide,” Phys. Rev. B Condens. Matter49(11), 7408–7417 (1994). [CrossRef] [PubMed]
  21. Y. S. Touloukian, ed., Thermophysical Properties of Matter: Volume 14 (IFI/Plenum, 1979).
  22. J. H. Weaver and H. P. R. Frederikse, CRC Handbook of Chemistry and Physics (CRC Press, 1977)
  23. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B6(12), 4370–4379 (1972). [CrossRef]
  24. B. Berini, W. Noun, Y. Dumont, E. Popova, and N. Keller, “High temperature ellipsometry of the conductive oxide LaNiO3,” J. Appl. Phys.101(2), 023527–023529 (2007). [CrossRef]
  25. J. M. Ziman, Electrons and Phonons (Oxford University Press, 1960)

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited