OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 27 — Dec. 17, 2012
  • pp: 28862–28870

Generation of quasi-coherent cylindrical vector beams by leaky mirrorless laser

Tal Ellenbogen, Dongxing Wang, and Kenneth B. Crozier  »View Author Affiliations

Optics Express, Vol. 20, Issue 27, pp. 28862-28870 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (2194 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We demonstrate that cylindrical vector beams with radial and azimuthal polarization states can be generated by leaky emission from photoexcited molecules embedded in slab-optical-waveguides which are formed on thin metal films on glass. Mirrorless lasing action in the optical waveguide leads to an order-of-magnitude collapse of the emission energy bandwidth and an emission directionality enhancement exceeding three-fold. This leads to the creation of fine rings of quasi-coherent light with radial and azimuthal polarizations. We study the effect of the leakage loss on the amplified spontaneous emission process and on the photon yield. We find a critical value of metal film thickness for the observation of mirrorless lasing action and optimal values for enhancing photon extraction.

© 2012 OSA

OCIS Codes
(140.0140) Lasers and laser optics : Lasers and laser optics
(310.6845) Thin films : Thin film devices and applications

ToC Category:
Lasers and Laser Optics

Original Manuscript: October 3, 2012
Revised Manuscript: November 25, 2012
Manuscript Accepted: November 26, 2012
Published: December 12, 2012

Tal Ellenbogen, Dongxing Wang, and Kenneth B. Crozier, "Generation of quasi-coherent cylindrical vector beams by leaky mirrorless laser," Opt. Express 20, 28862-28870 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. B. E. A. Saleh and M. C. Teich, Fundamentals of photonics (Wiley Online Library, 1991).
  2. R. W. Boyd, Nonlinear optics (Academic Pr., 2003).
  3. T. Ellenbogen, P. Steinvurzel, and K. B. Crozier, “Strong coupling between excitons in j-aggregates and waveguide modes in thin polymer films,” Appl. Phys. Lett.98(26), 261103 (2011). [CrossRef]
  4. Q. Zhan, “Cylindrical vector beams: from mathematical concepts to applications,” Adv. in Opt. and Photon.1(1), 1–57 (2009). [CrossRef]
  5. S. Quabis, R. Dorn, M. Eberler, O. Glöckl, and G. Leuchs, “Focusing light to a tighter spot,” Opt. Commun.179(1-6), 1–7 (2000). [CrossRef]
  6. R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett.91(23), 233901 (2003). [CrossRef] [PubMed]
  7. L. Novotny, M. R. Beversluis, K. S. Youngworth, and T. G. Brown, “Longitudinal field modes probed by single Molecules,” Phys. Rev. Lett.86(23), 5251–5254 (2001). [CrossRef] [PubMed]
  8. H. Wang, L. Shi, B. Lukyanchuk, C. Sheppard, and C. T. Chong, “Creation of a needle of longitudinally polarized light in vacuum using binary optics,” Nat. Photonics2(8), 501–505 (2008). [CrossRef]
  9. D. N. Gupta, N. Kant, D. E. Kim, and H. Suk, “Electron acceleration to GeV energy by a radially polarized laser,” Phys. Lett. A368(5), 402–407 (2007). [CrossRef]
  10. F. K. Fatemi, “Cylindrical vector beams for rapid polarization-dependent measurements in atomic systems,” Opt. Express19(25), 25143–25150 (2011). [CrossRef] [PubMed]
  11. Q. Zhan, “Evanescent Bessel beam generation via surface plasmon resonance excitation by a radially polarized beam,” Opt. Lett.31(11), 1726–1728 (2006). [CrossRef] [PubMed]
  12. C. J. R. Sheppard and A. Choudhury, “Annular pupils, radial polarization, and superresolution,” Appl. Opt.43(22), 4322–4327 (2004). [CrossRef] [PubMed]
  13. S. C. Tidwell, G. H. Kim, and W. D. Kimura, “Efficient radially polarized laser beam generation with a double interferometer,” Appl. Opt.32(27), 5222–5229 (1993). [CrossRef] [PubMed]
  14. R. Oron, S. Blit, N. Davidson, A. A. Friesem, Z. Bomzon, and E. Hasman, “The formation of laser beams with pure azimuthal or radial polarization,” Appl. Phys. Lett.77(21), 3322–3324 (2000). [CrossRef]
  15. U. Levy, C. H. Tsai, L. Pang, and Y. Fainman, “Engineering space-variant inhomogeneous media for polarization control,” Opt. Lett.29(15), 1718–1720 (2004). [CrossRef] [PubMed]
  16. K. Yonezawa, Y. Kozawa, and S. Sato, “Generation of a radially polarized laser beam by use of the birefringence of a c-cut Nd:YVO4 crystal,” Opt. Lett.31(14), 2151–2153 (2006). [CrossRef] [PubMed]
  17. Y. Kozawa and S. Sato, “Generation of a radially polarized laser beam by use of a conical Brewster prism,” Opt. Lett.30(22), 3063–3065 (2005). [CrossRef] [PubMed]
  18. T. Ellenbogen and K. B. Crozier, “Exciton-polariton emission from organic semiconductor optical waveguides,” Phys. Rev. B84(16), 161304 (2011). [CrossRef]
  19. G. M. Akselrod, J. R. Tischler, E. R. Young, D. G. Nocera, and V. Bulovic, “Exciton-exciton annihilation in organic polariton microcavities,” Phys. Rev. B82(11), 113106 (2010). [CrossRef]
  20. K. G. Lee, X. W. Chen, H. Eghlidi, P. Kukura, R. Lettow, A. Renn, V. Sandoghdar, and S. Götzinger, “A planar dielectric antenna for directional single-photon emission and near-unity collection efficiency,” Nat. Photonics5(3), 166–169 (2011). [CrossRef]
  21. A. E. Siegman, Lasers, (Mill Valley, 1986), Chap. 13.
  22. P. Yang, G. Wirnsberger, H. C. Huang, S. R. Cordero, M. D. McGehee, B. Scott, T. Deng, G. M. Whitesides, B. F. Chmelka, S. K. Buratto, and G. D. Stucky, “Mirrorless lasing from mesostructured waveguides patterned by soft lithography,” Science287(5452), 465–467 (2000). [CrossRef] [PubMed]
  23. L. W. Casperson and A. Yariv, “Spectral narrowing in high-gain lasers,” IEEE J. Quantum Electron.8(2), 80–85 (1972). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited