OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 27 — Dec. 17, 2012
  • pp: 28893–28905

Characterization and mechanism of glass microwelding by double-pulse ultrafast laser irradiation

Sizhu Wu, Dong Wu, Jian Xu, Yasutaka Hanada, Ryo Suganuma, Haiyu Wang, Testuya Makimura, Koji Sugioka, and Katsumi Midorikawa  »View Author Affiliations


Optics Express, Vol. 20, Issue 27, pp. 28893-28905 (2012)
http://dx.doi.org/10.1364/OE.20.028893


View Full Text Article

Enhanced HTML    Acrobat PDF (2955 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We investigated the physical mechanism of high-efficiency glass microwelding by double-pulse ultrafast laser irradiation by measuring the dependences of the size of the heat-affected zone and the bonding strength on the delay time between the two pulses for delay time up to 80 ns. The size of the heat-affected zone increases rapidly when the delay time is increased from 0 to 12.5 ps. It then decreases dramatically when the delay time is further increased to 30 ps. It has a small peak around 100 ps. For delay time up to 40 ns, the size of the heat-affected zone exceeds that for a delay time of 0 ps, whereas for delay time over 60 ps, it becomes smaller than that for a delay time of 0 ps. The bonding strength exhibits the same tendency. The underlying physical mechanism is discussed in terms of initial electron excitation by the first pulse and subsequent excitation by the second pulse: specifically, the first pulse induces multiphoton ionization or tunneling ionization, while the second pulse induces electron heating or avalanche ionization or the second pulse is absorbed by the localized state. Transient absorption of glass induced by the ultrafast laser pulse was analyzed by an ultrafast pump–probe technique. We found that the optimum pulse energy ratio is unity. These results provide new insights into high-efficiency ultrafast laser microwelding of glass and suggest new possibilities for further development of other ultrafast laser processing techniques.

© 2012 OSA

OCIS Codes
(140.3390) Lasers and laser optics : Laser materials processing
(140.7090) Lasers and laser optics : Ultrafast lasers
(160.2750) Materials : Glass and other amorphous materials
(190.4180) Nonlinear optics : Multiphoton processes

ToC Category:
Laser Microfabrication

History
Original Manuscript: October 5, 2012
Revised Manuscript: November 15, 2012
Manuscript Accepted: November 17, 2012
Published: December 12, 2012

Citation
Sizhu Wu, Dong Wu, Jian Xu, Yasutaka Hanada, Ryo Suganuma, Haiyu Wang, Testuya Makimura, Koji Sugioka, and Katsumi Midorikawa, "Characterization and mechanism of glass microwelding by double-pulse ultrafast laser irradiation," Opt. Express 20, 28893-28905 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-27-28893


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. T. Tamaki, W. Watanabe, J. Nishii, and K. Itoh, “Welding of transparent materials using femtosecond laser pulse,” Jpn. J. Appl. Phys.44(22), L687–L689 (2005). [CrossRef]
  2. W. Watanabe, S. Onda, T. Tamaki, K. Itoh, and J. Nishii, “Space-selective laser joining of dissimilar transparent materials using femtosecond laser pulse,” Appl. Phys. Lett.89(2), 021106 (2006). [CrossRef]
  3. T. Tamaki, W. Watanabe, H. Nagai, M. Yoshida, J. Nishii, and K. Itoh, “Structural modification in fused silica by a femtosecond fiber laser at 1558 nm,” Opt. Express14(15), 6971–6980 (2006). [CrossRef] [PubMed]
  4. C. Luo and L. Lin, “The application of nanosecond-pulsed laser welding technology in MEMS packaging with a shadow mask,” Sens. Actuators A Phys.97-98, 398–404 (2002). [CrossRef]
  5. W. Watanabe, S. Onda, T. Tamaki, and K. Itoh, “Direct joining of glass substrates by 1 kHz femtosecond laser pulses,” Appl. Phys. B87(1), 85–89 (2007). [CrossRef]
  6. A. Horn, I. Mingareev, A. Werth, M. Kachel, and U. Brenk, “Investigations on ultrafast welding of glass-glass and glass-silicon,” Appl. Phys., A Mater. Sci. Process.93(1), 171–175 (2008). [CrossRef]
  7. Y. Ozeki, T. Inoue, T. Tamaki, H. Yamaguchi, S. Onda, W. Watanabe, T. Sano, S. Nishiuchi, A. Hirose, and K. Itoh, “Direct welding between copper and glass substrates with femtosecond laser pulses,” Appl. Phys. Express1, 082601 (2008). [CrossRef]
  8. Y. Kim, J. Choi, Y. Lee, T. Kim, D. Kim, W. Jang, K.-S. Lim, I.-B. Sohn, and J. Lee, “Femtosecond laser bonding of glasses and ion migration in the interface,” Appl. Phys., A Mater. Sci. Process.101(1), 147–152 (2010). [CrossRef]
  9. I. Miyamoto, K. Cvecek, Y. Okamoto, M. Schmidt, and H. Helvajian, “Characteristics of laser absorption and welding in FOTURAN glass by ultrashort laser pulses,” Opt. Express19(23), 22961–22973 (2011). [CrossRef] [PubMed]
  10. I. Miyamoto, K. Cvecek, and M. Schmidt, “Evaluation of nonlinear absorptivity in internal modification of bulk glass by ultrashort laser pulses,” Opt. Express19(11), 10714–10727 (2011). [CrossRef] [PubMed]
  11. I. Miyamoto, K. Cvecek, and M. Schmidt, “Evaluation of nonlinear absorptivity and absorption region in fusion welding of glass using ultrashort laser pulse,” Phys. Procedia12, 378–386 (2011). [CrossRef]
  12. S. Richter, S. Doring, A. Tunnermann, and S. Nolte, “Bonding of glass with femtosecond laser pulses at high repetition rates,” Appl. Phys., A Mater. Sci. Process.103(2), 257–261 (2011). [CrossRef]
  13. D. Hélie, M. Bégin, F. Lacroix, and R. Vallée, “Reinforced direct bonding of optical materials by femtosecond laser welding,” Appl. Opt.51(12), 2098–2106 (2012). [CrossRef] [PubMed]
  14. K. Sugioka, M. Iida, H. Takai, and K. Micorikawa, “Efficient microwelding of glass substrates by ultrafast laser irradiation using a double-pulse train,” Opt. Lett.36(14), 2734–2736 (2011). [CrossRef] [PubMed]
  15. S. M. Eaton, H. Zhang, M. L. Ng, J. Li, W. J. Chen, S. Ho, and P. R. Herman, “Transition from thermal diffusion to heat accumulation in high repetition rate femtosecond laser writing of buried optical waveguides,” Opt. Express16(13), 9443–9458 (2008). [CrossRef] [PubMed]
  16. C. Y. Ho, “Effects of polarizations of a laser on absorption in a paraboloid of revolution-shaped welding or drilling cavity,” J. Appl. Phys.96(10), 5393–5401 (2004). [CrossRef]
  17. S. M. Eaton, H. Zhang, P. Herman, F. Yoshino, L. Shah, J. Bovatsek, and A. Arai, “Heat accumulation effects in femtosecond laser-written waveguides with variable repetition rate,” Opt. Express13(12), 4708–4716 (2005). [CrossRef] [PubMed]
  18. M. Shimizu, M. Sakakura, M. Ohnishi, Y. Shimotsuma, T. Nakaya, K. Miura, and K. Hirao, “Mechanism of heat-modification inside a glass after irradiation with high-repetition rate femtosecond laser pulses,” J. Appl. Phys.108(7), 073533 (2010). [CrossRef]
  19. C. B. Schaffer, J. F. Garcia, and E. Mazur, “Bulk heating of transparent materials using a high-repetition-rate femtosecond laser,” Appl. Phys., A Mater. Sci. Process.76(3), 351–354 (2003). [CrossRef]
  20. S. S. Mao, F. Quere, S. Guizard, X. Mao, R. E. Russo, G. Petite, and P. Martin, “Dynamics of femtosecond laser interactions with dielectrics,” Appl. Phys., A Mater. Sci. Process.79, 1695–1709 (2004). [CrossRef]
  21. R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics2(4), 219–225 (2008). [CrossRef]
  22. S. Guizard, P. D’Oliveira, P. Daguzan, P. Martin, P. Meynadier, and G. Petite, “Time-resolved studies of carriers dynamics in wide band gap materials, ” Nucl. Instr. and Meth. in Phys. Res. B116, 43–48 (1996).
  23. B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond-to-femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B Condens. Matter53(4), 1749–1761 (1996). [CrossRef] [PubMed]
  24. T. Hongo, K. Sugioka, H. Niino, Y. Cheng, M. Masuda, I. Miyamoto, H. Takai, and K. Midorikawa, “Investigation of photoreaction mechanism of photosensitive glass by femtosecond laser,” J. Appl. Phys.97(6), 063517 (2005). [CrossRef]
  25. K. S. Song and R. T. Williams, Self-Trapped Excitons (Springer-Verlag, 1993).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited