OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 27 — Dec. 17, 2012
  • pp: 28923–28928

Scanning plasmonic microscopy by image reconstruction from the Fourier space

Oriane Mollet, Serge Huant, and Aurélien Drezet  »View Author Affiliations

Optics Express, Vol. 20, Issue 27, pp. 28923-28928 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (844 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We demonstrate a simple scheme for high-resolution imaging of nanoplasmonic structures that basically removes most of the resolution limiting allowed light usually transmitted to the far field. This is achieved by implementing a Fourier lens in a near-field scanning optical microscope (NSOM) operating in the leakage-radiation microscopy (LRM) mode. The method consists of reconstructing optical images solely from the plasmonic ‘forbidden’ light collected in the Fourier space. It is demonstrated by using a point-like nanodiamond-based tip that illuminates a thin gold film patterned with a sub-wavelength annular slit. The reconstructed image of the slit shows a spatial resolution enhanced by a factor ≃ 4 compared to NSOM images acquired directly in the real space.

© 2012 OSA

OCIS Codes
(180.5810) Microscopy : Scanning microscopy
(240.6680) Optics at surfaces : Surface plasmons
(180.4243) Microscopy : Near-field microscopy
(050.6624) Diffraction and gratings : Subwavelength structures

ToC Category:

Original Manuscript: October 9, 2012
Revised Manuscript: November 26, 2012
Manuscript Accepted: November 30, 2012
Published: December 12, 2012

Virtual Issues
Vol. 8, Iss. 1 Virtual Journal for Biomedical Optics

Oriane Mollet, Serge Huant, and Aurélien Drezet, "Scanning plasmonic microscopy by image reconstruction from the Fourier space," Opt. Express 20, 28923-28928 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. B. Hecht, D. W. Pohl, H. Heinzelmann, and L. Novotny, “Tunnel near-field optical microscopy: TNOM-2,” Ultramicroscopy 61, 99–104 (1995). [CrossRef]
  2. B. Hecht, H. Bielefeldt, L. Novotny, Y. Inouye, and D. W. Pohl, “Local excitation, scattering, and interference of surface plasmons,” Phys. Rev. Lett. 77, 1889–1892 (1996). [CrossRef] [PubMed]
  3. C. Chicane, T. David, R. Quidant, J.-C. Weeber, Y. Lacroute, E. Bourillot, A. Dereux, G. Colas, Des Francs, and C. Girard, “Imaging the Local Density of States of Optical Corrals,” Phys. Rev. Lett. 88, 097402 (2002). [CrossRef]
  4. A. Bouhelier, Th. Huser, H. Tamaru, H.-J. Güntherodt, and D. W. Pohl, “Plasmon optics of structured silver films,” Phys. Rev. B 63, 155404 (2001). [CrossRef]
  5. A. Drezet, A. Hohenau, A. L. Stepanov, H. Ditlbacher, B. Steinberger, N. Galler, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “How to erase surface plasmon fringes,” Appl. Phys. Lett. 89, 091117 (2006). [CrossRef]
  6. D. E. Chang, A. S. Sørensen, P. R. Hemmer, and M. D. Lukin, “Quantum Optics with Surface Plasmons,” Phys. Rev. Lett. 97, 053002 (2006). [CrossRef] [PubMed]
  7. A. V. Akimov, A. Mukherjee, C. L. Yu, D. E. Chang, A. S. Zibrov, P. R. Hemmer, H. Park, and M. D. Lukin, “Generation of single optical plasmons in metallic nanowires coupled to quantum dots,” Nature 450, 402–406 (2007). [CrossRef] [PubMed]
  8. S. Schietinger, M. Barth, T. Aichele, and O. Benson, “Plasmon-enhanced single photon emission from a nanoassembled metal-diamond hybrid structure at room temperature.,” Nano Lett. 9, 1694–1698 (2009). [CrossRef] [PubMed]
  9. Y. Fedutik, V.V. Temnov, O. Schöps, U. Woggon, and M.V. Artemyev, “Exciton-Plasmon-Photon Conversion in Plasmonic Nanostructures,” Phys. Rev. Lett. 99, 136802 (2007). [CrossRef] [PubMed]
  10. A. W. Schell, G. Kewes, T. Hanke, A. Leitenstorfer, R. Bratschitsch, O. Benson, and T. Aichele, “Single defect centers in diamond nanocrystals as quantum probes for plasmonic nanostructures,” Opt. Express 19, 7914–7920 (2011). [CrossRef] [PubMed]
  11. R. Kolesov, B. Grotz, G. Balasubramanian, R. J. Stöhr, A. A. L. Nicolet, P. R. Hemmer, F. Jelezko, and J. Wrachtrup, “Wave-particle duality of single surface plasmon polaritons,” Nature Phys. 5, 470–474 (2009). [CrossRef]
  12. A. Huck, S. Kumar, A. Shakoor, and U. Andersen, “Controlled Coupling of a Single Nitrogen-Vacancy Center to a Silver Nanowire,” Phys. Rev. Lett 106, 096801 (2011). [CrossRef] [PubMed]
  13. A. Cuche, A. Drezet, Y. Sonnefraud, O. Faklaris, F. Treussart, J.-F. Roch, and S. Huant, “Near-field optical microscopy with a nanodiamond-based single-photon tip,” Opt. Express 17, 19969–19980 (2009). [CrossRef] [PubMed]
  14. A. Drezet, A. Cuche, and S. Huant, “Near-field microscopy with a single-photon point-like emitter: Resolution versus the aperture tip?,” Opt. Commun. 284, 1444–1450 (2011). [CrossRef]
  15. Y. Sonnefraud, A. Cuche, O. Faklaris, J.-P. Boudou, T. Sauvage, J.-F. Roch, F. Treussart, and S. Huant, “Diamond nanocrystals hosting single nitrogen-vacancy color centers sorted by photon-correlation near-field microscopy,” Opt. Lett. 33, 611–613 (2008). [CrossRef] [PubMed]
  16. A. Cuche, O. Mollet, A. Drezet, and S. Huant, “‘Deterministic’ quantum plasmonics,” Nano Lett. 10, 4566–4570 (2010). [CrossRef] [PubMed]
  17. O. Mollet, A. Cuche, A. Drezet, and S. Huant, “Leakage radiation microscopy of surface plasmons launched by a nanodiamond-based tip,” Diam. Relat. Mater. 20, 995–998 (2011). [CrossRef]
  18. O. Mollet, S. Huant, G. Dantelle, T. Gacoin, and A. Drezet, “Quantum plasmonics: Second-order coherence of surface plasmons launched by quantum emitters into a metallic film,” Phys. Rev. B 86, 045401 (2012). [CrossRef]
  19. S. Kühn, C. Hettich, C. Schmitt, J.-P. Poizat, and V. Sandoghdar, “Diamond colour centres as a nanoscopic light source for scanning near-field optical microscopy,” J. Microsc. 202, 2–6 (2001). [CrossRef] [PubMed]
  20. R. Marty, C. Girard, A. Arbouet, and G. Colas des Francs, “Near-field coupling of a Point-like dipolar source with a thin metallic film: Implication for STM plasmon excitations,” Chem. Phys. Lett. 532, 100–105 (2012). [CrossRef]
  21. A. Gruber, A. Drabenstedt, C. Tietz, L. Fleury, J. Wrachtrup, and C. von Borczyskowski, “Scanning confocal optical microscopy and magnetic resonance on single defect centers,” Science 276, 2012–2014 (1997). [CrossRef]
  22. K. Karrai and R. D. Grober, “Piezoelectric tip-sample distance control for near field optical microscopes,” Appl. Phys. Lett. 60, 1842–1844 (1995). [CrossRef]
  23. Slight dispersions in the measured rim width are due to an imperfect patterning during the FIB milling process.
  24. C. Girard, O. J. F. Martin, G. Leveque, G. Colas des Francs, and A. Dereux, “Generalized bloch equations for optical interactions in confined geometries,” Chem. Phys. Lett. 404, 44–48 (2005). [CrossRef]
  25. R. Marty, A. Arbouet, V. Paillard, C. Girard, and G. Colas des Francs, “Photon antibunching in the optical near-field,” Phys. Rev. B 82, 081403 (2010). [CrossRef]
  26. F. I. Baida, D. Van Labeke, A. Bouhelier, T. Huser, and D. Pohl, “Propagation and diffraction of locally excited surface plasmons,” J. Opt. Soc. Am. A 18, 1552–1561 (2001). [CrossRef]
  27. L. Novotny, B. Hecht, and D. Pohl, “Interference of locally excited surface plasmons,” J. Appl. Phys. 81, 1798–1806 (1997). [CrossRef]
  28. A. Hohenau, J. R. Krenn, A. Drezet, O. Mollet, S. Huant, C. Genet, B. Stein, and T. W. Ebbesen, “Surface plasmon leakage radiation microscopy at the diffraction limit,” Opt. Express 19, 25749–25762 (2011). [CrossRef]
  29. M. Specht, J. D. Pedarnig, W. M. Heckl, and T. W. Hänsch, “Scanning plasmon near-field microscope,” Phys. Rev. Lett. 68, 476–479 (1992). [CrossRef] [PubMed]
  30. T. Wang, E. Boer-Duchemin, Y. Zhang, G. Comtet, and G. Dujardin, “Excitation of propagating surface plasmons with a scanning tunneling microscope,” Nanotechnology 22, 175201 (2011). [CrossRef] [PubMed]
  31. P. Bharadwaj, A. Bouhelier, and L. Novotny, “Electrical excitation of surface plasmons,” Phys. Rev. Lett. 106, 226802 (2011). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited